Soft robots show an advantage when conducting tasks in complex environments due to their enormous flexibility and adaptability. However, soft robots suffer interactions and nonlinear deformation when interacting with soft and fluid materials. The reason behind is the free boundary interactions, which refers to undetermined contact between soft materials, specifically containing nonlinear deformation in air and nonlinear interactions in fluid for soft robot simulation. Therefore, we propose a new approach using material point method (MPM), which can solve the free boundary interactions problem, to simulate soft robots under such environments. The proposed approach can autonomously predict the flexible and versatile behaviors of soft robots. Our approach entails incorporating automatic differentiation into the algorithm of MPM to simplify the computation and implement an efficient implicit time integration algorithm. We perform two groups of experiments with an ordinary pneumatic soft finger in different free boundary interactions. The results indicate that it is possible to simulate soft robots with nonlinear interactions and deformation, and such environmental effects on soft robots can be restored.