The article introduces a novel class of 4R1H mechanisms, where 4R indicates four revolute joints and 1H indicates one helical joint. The paper starts with the type synthesis of these mechanisms, which involves combining two kinematic chains with planar and cylindrical motion types into a single closed-loop kinematic chain. If we fix any link in such a chain, we get a workable mechanism. The synthesis procedure considers two options for the relative arrangement of these two kinematic chains. Adding an H joint to the kinematic chain allows us to design mechanisms whose output link performs spatial motion. Using the proposed synthesis procedure, we develop a family of 4R1H mechanisms. Next, we choose one mechanism as a representative example and consider its mobility, singularity, kinematic, and dynamic analysis. Using screw theory, we confirm the mechanism has one degree of freedom and determine its singular configurations. Kinematic analysis provides closed-form expressions to calculate displacements, velocities, and accelerations of all the mechanism links. Dynamic analysis uses these results to compute the motor torque required for one motion cycle. To verify the suggested analytical algorithms and obtained results, we use computer-aided design tools, which allow us to develop virtual and physical prototypes.