We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For $E \subset \mathbb {N}$, a subset $R \subset \mathbb {N}$ is E-intersective if for every $A \subset E$ having positive relative density, $R \cap (A - A) \neq \varnothing $. We say that R is chromatically E-intersective if for every finite partition $E=\bigcup _{i=1}^k E_i$, there exists i such that $R\cap (E_i-E_i)\neq \varnothing $. When $E=\mathbb {N}$, we recover the usual notions of intersectivity and chromatic intersectivity. We investigate to what extent the known intersectivity results hold in the relative setting when $E = \mathbb {P}$, the set of primes, or other sparse subsets of $\mathbb {N}$. Among other things, we prove the following: (1) the set of shifted Chen primes $\mathbb {P}_{\mathrm {Chen}} + 1$ is both intersective and $\mathbb {P}$-intersective; (2) there exists an intersective set that is not $\mathbb {P}$-intersective; (3) every $\mathbb {P}$-intersective set is intersective; (4) there exists a chromatically $\mathbb {P}$-intersective set which is not intersective (and therefore not $\mathbb {P}$-intersective).
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.