We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
One of the central logical ideas in Wittgenstein’s Tractatus logico-philosophicus is the elimination of the identity sign in favor of the so-called “exclusive interpretation” of names and quantifiers requiring different names to refer to different objects and (roughly) different variables to take different values. In this paper, we examine a recent development of these ideas in papers by Kai Wehmeier. We diagnose two main problems of Wehmeier’s account, the first concerning the treatment of individual constants, the second concerning so-called “pseudo-propositions” (Scheinsätze) of classical logic such as
$a=a$
or
$a=b \wedge b=c \rightarrow a=c$
. We argue that overcoming these problems requires two fairly drastic departures from Wehmeier’s account: (1) Not every formula of classical first-order logic will be translatable into a single formula of Wittgenstein’s exclusive notation. Instead, there will often be a multiplicity of possible translations, revealing the original “inclusive” formulas to be ambiguous. (2) Certain formulas of first-order logic such as
$a=a$
will not be translatable into Wittgenstein’s notation at all, being thereby revealed as nonsensical pseudo-propositions which should be excluded from a “correct” conceptual notation. We provide translation procedures from inclusive quantifier-free logic into the exclusive notation that take these modifications into account and define a notion of logical equivalence suitable for assessing these translations.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.