Madagascar is one of the most threatened biodiversity hotspots, and protection of its biodiversity is becoming increasingly urgent as deforestation of the island continues. For the long-term success of conservation efforts it is essential that key ecological processes, such as seed dispersal, are protected and restored. Therefore, the identification of ecological gaps is a vital task. For Madagascar, only little is known about plant–animal interactions, and traditional methods of ecological research are too time-consuming to provide crucial information about breakdowns in these interactions. To identify likely dispersal gaps we therefore used a theoretical approach to analyse plant–disperser interactions in Madagascar. We used data science tools to impute missing data on relevant plant traits to subsequently predict the most likely dispersal agents for each of Madagascar's endemic plant species. We found that 38% of the endemic species (N = 8,784) are endozoochorous, and among these 26–41% display a primate syndrome and 17–19% a bird syndrome (depending on the definition of syndromes). This lower percentage of endozoochorous species and higher percentage of species with a primate syndrome in Madagascar compared to other tropical areas reflects the unusual disperser guild on the island. Only five bird species but 20 lemur species are frugivorous, and 16 of those lemur species are currently threatened with extinction. The disappearance of frugivorous lemurs would significantly change the vegetation dynamics of Madagascar's ecosystems, and a high proportion of Madagascar's endemic plants would enter an extinction vortex.