The occurrence of multi-hit events and the separation distance between multi-hit ion pairs field evaporated from III-nitride semiconductors can potentially provide insights on neighboring chemistry, crystal structure, and field conditions. In this work, we quantify the range of variation in major III-N and III-III ion-pair separation to establish correlations with bulk composition, growth method, and ion-pair chemistry. The analysis of ion-pair separation along the AlGaN/GaN heterostructure system allows for comparison of Ga-N and Ga-Ga ion-pair separation between events evaporated from pure GaN and Al0.3Ga0.7N. From this, we aim to define a relative measure for the bond length of ion pairs within an AlGaN/GaN heterostructure. The distributions of pair separation revealed a distinct bimodal behavior that is unique to Al-N2+ ion pairs, suggesting the occurrence of both co-evaporation and molecular dissociation. Finally, we demonstrated that the two modes of ion-pair events align with the known variation in the surface electric field of the AlGaN(0001) structure. These findings demonstrate the utility of atom probe tomography in studying the crystallographic nature of nitride semiconductors.