Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-17T03:22:34.522Z Has data issue: false hasContentIssue false

Understanding the Nature of Crystallographic Bonds by Establishing the Correlation between Ion-Pair Chemistry and Their Separation in Detector Space

Published online by Cambridge University Press:  15 March 2022

Olivia G. Licata
Affiliation:
Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY 14260, USA
Baishakhi Mazumder*
Affiliation:
Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY 14260, USA
*
*Corresponding author: Baishakhi Mazumder, E-mail: [email protected]
Get access

Abstract

The occurrence of multi-hit events and the separation distance between multi-hit ion pairs field evaporated from III-nitride semiconductors can potentially provide insights on neighboring chemistry, crystal structure, and field conditions. In this work, we quantify the range of variation in major III-N and III-III ion-pair separation to establish correlations with bulk composition, growth method, and ion-pair chemistry. The analysis of ion-pair separation along the AlGaN/GaN heterostructure system allows for comparison of Ga-N and Ga-Ga ion-pair separation between events evaporated from pure GaN and Al0.3Ga0.7N. From this, we aim to define a relative measure for the bond length of ion pairs within an AlGaN/GaN heterostructure. The distributions of pair separation revealed a distinct bimodal behavior that is unique to Al-N2+ ion pairs, suggesting the occurrence of both co-evaporation and molecular dissociation. Finally, we demonstrated that the two modes of ion-pair events align with the known variation in the surface electric field of the AlGaN(0001) structure. These findings demonstrate the utility of atom probe tomography in studying the crystallographic nature of nitride semiconductors.

Type
Software and Instrumentation
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of the Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blum, I, Rigutti, L, Vurpillot, F, Vella, A, Gaillard, A & Deconihout, B (2016). Dissociation dynamics of molecular ions in high DC electric field. J Phys Chem A 120(20), 36543662.CrossRefGoogle ScholarPubMed
Chen, KY & Drabold, DA (2002). First principles molecular dynamics study of amorphous AlxGa1-xN alloys. J Appl Phys 91(12), 97439751.CrossRefGoogle Scholar
Costa, GD, Wang, H, Duguay, S, Bostel, A, Blavette, D & Deconihout, B (2012). Advance in multi-hit detection and quantization in atom probe tomography. Rev Sci Instrum 83(12), 123709.CrossRefGoogle ScholarPubMed
Cuduvally, R, Morris, RJH, Ferrari, P, Bogdanowicz, J, Fleischmann, C, Melkonyan, D & Vandervorst, W (2020). Potential sources of compositional inaccuracy in the atom probe tomography of InxGa1-xAs. Ultramicroscopy 210, 112918.CrossRefGoogle Scholar
De Geuser, F, Gault, B, Bostel, A & Vurpillot, F (2007). Correlated field evaporation as seen by atom probe tomography. Surf Sci 601(2), 536543.CrossRefGoogle Scholar
Di Russo, E, Blum, I, Houard, J, Gilbert, M, Da Costa, G, Blavette, D & Rigutti, L (2018). Compositional accuracy of atom probe tomography measurements in GaN: Impact of experimental parameters and multiple evaporation events. Ultramicroscopy 187, 126134.CrossRefGoogle Scholar
Di Russo, E, Blum, I, Rivalta, I, Houard, J, Da Costa, G, Vurpillot, F, Blavette, D & Rigutti, L (2020). Detecting dissociation dynamics of phosphorus molecular ions by atom probe tomography. J Phys Chem A 124(52), 1097710988.CrossRefGoogle ScholarPubMed
Engberg, DLJ, Tengdelius, L, Hogberg, H, Thuvander, M & Hultman, L (2019). Atom probe tomography field evaporation characteristics and compositional corrections of ZrB2. Mater Charact 156, 109871.CrossRefGoogle Scholar
Gault, B, Moody, MP, Cairney, JM & Ringer, SP (2012 a). Atom probe crystallography. Mater Today 15(9), 378386.CrossRefGoogle Scholar
Gault, B, Moody, MP, Cairney, JM & Ringer, SP (2012 b). Atom Probe Microscopy. New York, NY, USA: Springer.CrossRefGoogle Scholar
Gault, B, Saxey, DW, Ashton, MW, Sinnott, SB, Chiaramonti, AN, Moody, MP & Schreiber, DK (2016). Behavior of molecules and molecular ions near a field emitter. New J Phys 18(3), 033031.CrossRefGoogle Scholar
Giddings, AD, Koelling, S, Shimizu, Y, Estivill, R, Inoue, K, Vandervorst, W & Yeoh, WK (2018). Industrial application of atom probe tomography to semiconductor devices. Scripta Mater 148, 8290.CrossRefGoogle Scholar
Hu, WG, Ma, B, Li, DB, Narukawa, M, Miyake, H & Hiramatsu, K (2009). Mobility enhancement of 2DEG in MOVPE-grown AlGaN/AlN/GaN HEMT structure using vicinal (0001) sapphire. Superlattice Microst 46(6), 812816.CrossRefGoogle Scholar
Katchkanov, V, Mosselmans, JFW, Dalmasso, S, O'Donnell, KP, Hernandez, S, Wang, K, Martin, RW, Briot, O, Rousseau, N, Halambalakis, G, Lorenz, K & Alves, E (2004). Extended X-ray absorption fine structure studies of thulium doped GaN epilayers. Superlattice Microst 36(4-6), 729736.CrossRefGoogle Scholar
Kelly, TF & Larson, DJ (2012). Atom probe tomography 2012. Annu Rev Mater Res 42, 131.CrossRefGoogle Scholar
Khan, MA, Ringer, SP & Zheng, RK (2016). Atom probe tomography on semiconductor devices. Adv Mater Interfaces 3(12), 1500713.CrossRefGoogle Scholar
Kingham, DR (1982). The post-ionization of field evaporated ions: A theoretical explanation of multiple charge states. Surf Sci 116(2), 273301.CrossRefGoogle Scholar
Larson, DJ, Prosa, TJ, Perea, DE, Inoue, K & Mangelinck, D (2016). Atom probe tomography of nanoscale electronic materials. Mrs Bull 41(1), 3034.CrossRefGoogle Scholar
Lawniczak-Jablonska, K, Iwanowski, RJ, Demchenko, IN, Boettcher, T, Einfeldt, S, Hommel, D, Cortes, R & Perera, RCC (2001). Polarization dependent X-ray absorption studies of the chemical bonds anisotropy in wurtzite GaN grown at different conditions. J Alloy Compd 328(1–2), 7783.CrossRefGoogle Scholar
Licata, OG, Broderick, SR & Mazumder, B (2020). Correlation of multiplicity and chemistry in AlxGa1-xN heterostructure via atom probe tomography. Microsc Microanal 26(1), 95101.CrossRefGoogle ScholarPubMed
Liu, T, Jiang, CY, Huang, X, Du, CH, Zhao, ZF, Jing, L, Li, XL, Han, SC, Sun, JM, Pu, X, Zhai, JY & Hu, WG (2017). Electrical transportation and piezotronic-effect modulation in AlGaN/GaN MOS HEMTs and unpassivated HEMTs. Nano Energy 39, 5359.CrossRefGoogle Scholar
Mazumder, B, Kaun, SW, Lu, J, Keller, S, Mishra, UK & Speck, JS (2013). Atom probe analysis of AlN interlayers in AlGaN/AlN/GaN heterostructures. Appl Phys Lett 102(11), 111603.CrossRefGoogle Scholar
Meisenkothen, F, Steel, EB, Prosa, TJ, Henry, KT & Kolli, RP (2015). Effects of detector dead-time on quantitative analyses involving boron and multi-hit detection events in atom probe tomography. Ultramicroscopy 159, 101111.CrossRefGoogle ScholarPubMed
Miller, MK, Cerezo, A, Hetherington, M & Smith, GD (1996). Atom Probe Field Ion Microscopy. Oxford: Oxford University Press.Google Scholar
Miller, MK & Forbes, RG (2014). The local electrode atom probe. In Atom-Probe Tomography, Luby, M (Ed.), pp. 229258. Boston, MA: Springer.Google Scholar
Mishra, UK, Parikh, P & Wu, YF (2002). Algan/GaN HEMTs: An overview of device operation and applications. Proc IEEE 90(6), 10221031.CrossRefGoogle Scholar
Morris, RJH, Cuduvally, R, Melkonyan, D, Fleischmann, C, Zhao, M, Arnoldi, L, Heide, PVD & Vandervorst, W (2018). Toward accurate composition analysis of GaN and AlGaN using atom probe tomography. J Vac Sci Technol B 36(3), 03F130.CrossRefGoogle Scholar
Muller, M, Saxey, DW, Smith, GDW & Gault, B (2011). Some aspects of the field evaporation behaviour of GaSb. Ultramicroscopy 111(6), 487492.CrossRefGoogle ScholarPubMed
O'Donnell, KP, Fernandez-Torrente, I, Edwards, PR & Martin, RW (2004). The composition dependence of the InxGa1-xN bandgap. J Cryst Growth 269(1), 100105.CrossRefGoogle Scholar
Peng, Z, Choi, PP, Gault, B & Raabe, D (2017). Evaluation of analysis conditions for laser-pulsed atom probe tomography: Example of cemented tungsten carbide. Microsc Microanal 23(2), 431442.CrossRefGoogle ScholarPubMed
Peng, ZR, Vurpillot, F, Choi, PP, Li, YJ, Raabe, D & Gault, B (2018). On the detection of multiple events in atom probe tomography. Ultramicroscopy 189, 5460.CrossRefGoogle ScholarPubMed
Peng, ZR, Zanuttini, D, Gervais, B, Jacquet, E, Blum, I, Choi, PP, Raabe, D, Vurpillot, F & Gault, B (2019). Unraveling the metastability of Cn(2+) (n = 2–4) clusters. J Phys Chem Lett 10(3), 581588.CrossRefGoogle Scholar
Rigutti, L, Bonef, B, Speck, J, Tang, F & Oliver, RA (2018). Atom probe tomography of nitride semiconductors. Scripta Mater 148, 7581.CrossRefGoogle Scholar
Rousseau, L, Normand, A, Morgado, FF, Stephenson, L, Gault, B, Tehrani, K & Vurpillot, F (2020). Dynamic effects in voltage pulsed atom probe. Microsc Microanal 26(6), 11331146.CrossRefGoogle ScholarPubMed
Saxey, DW (2011). Correlated ion analysis and the interpretation of atom probe mass spectra. Ultramicroscopy 111(6), 473479.CrossRefGoogle ScholarPubMed
Schwarz, TM, Weikum, EM, Meng, K, Hadjixenophontos, E, Dietrich, CA, Kastner, J, Stender, P & Schmitz, G (2020). Field evaporation and atom probe tomography of pure water tips. Sci Rep 10(1), 114.CrossRefGoogle ScholarPubMed
Tang, F, Moody, MP, Martin, TL, Bagot, PA, Kappers, MJ & Oliver, RA (2015). Practical issues for atom probe tomography analysis of III-nitride semiconductor materials. Microsc Microanal 21(3), 544556.CrossRefGoogle ScholarPubMed
Thuvander, M, Kvist, A, Johnson, LJ, Weidow, J & Andren, HO (2013). Reduction of multiple hits in atom probe tomography. Ultramicroscopy 132, 8185.CrossRefGoogle ScholarPubMed
Wang, SC, Zhang, X, Yang, HQ & Cui, YP (2015). Effect of fluctuation in Al incorporation on the microstructure, bond lengths, and surface properties of an AlxGa1-xN epitaxial layer. Electron Mater Lett 11(4), 675681.CrossRefGoogle Scholar
Williams, CA, Smith, GD & Marquis, EA (2013). Quantifying the composition of yttrium and oxygen rich nanoparticles in oxide dispersion strengthened steels. Ultramicroscopy 125, 1017.CrossRefGoogle ScholarPubMed
Wu, YF, Kapolnek, D, Ibbetson, JP, Parikh, P, Keller, BP & Mishra, UK (2001). Very-high power density AlGaN/GaN HEMTs. IEEE Trans Electron Devices 48(3), 586590.Google Scholar
Yao, L, Gault, B, Cairney, JM & Ringer, SP (2010). On the multiplicity of field evaporation events in atom probe: A new dimension to the analysis of mass spectra. Phil Mag Lett 90(2), 121129.CrossRefGoogle Scholar
Zanuttini, D, Blum, I, di Russo, E, Rigutti, L, Vurpillot, F, Douady, J, Jacquet, E, Anglade, PM & Gervais, B (2018). Dissociation of GaN2+ and AIN2+ in APT: Analysis of experimental measurements. J Chem Phys 149, 13.CrossRefGoogle Scholar
Supplementary material: File

Licata and Mazumder supplementary material

Licata and Mazumder supplementary material

Download Licata and Mazumder supplementary material(File)
File 1.2 MB