We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Part one gives a description of the characteristics of the wind field over the ocean, including wind shear, turbulence and coherence. It shows how these parameters are modeled and used as an input to wind turbine analyses. The long-term statistics of the mean wind speed are discussed as well as the most common principles for wind speed measurements. In part two, the kinematics and dynamics of ocean waves are given in a form which in subsequent chapters is used in computing wave loads on structures, both in time and frequency domain. Long- and short-term wave statistics are discussed.
Given the easy embodiment of water vapor in air and its short residence times, the lower atmosphere is one of the critical pathways in the global hydrologic cycle; it transports water and energy around the globe without regard to continental boundaries and thus links the continents, the upper atmosphere, and the oceans. The transport and distribution of water vapor in the lower atmosphere, where it is most abundantly present, are among the main factors controlling precipitation and evaporation from the surface; these processes, in turn, determine soil and groundwater storage, and the different runoff phenomena. For purposes of practical analysis, the lower atmosphere can be treated as a turbulent boundary layer, allowing the application of similarity techniques to describe transport not only of water vapor, but also of momentum and sensible heat. The magnitudes of these transport phenomena and their interactions in the lower atmosphere are constrained by the surface energy budget as a critical boundary condition.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.