The effects of subclinical Zn deficiency on depletion and redistribution of body Zn were studied in weaned piglets. Forty-eight weaned piglets (German-Large-White×Land-Race×Piétrain; 50 % female, 50 % male-castrated; body weight 8·5 (sd 0·27) kg) were fed restrictively (450 g/d) a basal maize–soyabean meal-based diet supplemented with varying amounts of ZnSO4.7H2O (analysed dietary Zn: 28·1, 33·6, 38·8, 42·7, 47·5, 58·2, 67·8, 88·0 mg/kg diet) for an experimental period of 8 d. Analyses comprised Zn concentrations in soft tissues. Statistical analyses included regression models and k-means cluster analysis. Jejunum and kidney Zn correlated positively with dietary Zn (P<0·05). Other Zn pools responded in a non-linear fashion by declining (colon, epidermis, spleen) or increasing (mesenteric lymph follicles, thymus, skeletal muscle) below 63·6, 48·0, 47·5, 68·0, 43·0 and 53·1 mg Zn/kg diet, respectively (P<0·01). Above these thresholds, Zn concentrations in epidermis, mesenteric lymph follicles and skeletal muscle plateaued (P<0·0001), whereas they exhibited a decrease in colon and thymus (P<0·01) as well as a numerical increase in spleen. Clustering by dietary Zn concentration indicated clusters of varying Zn supply status and pathophysiological status. Clustering by biological matrices revealed a discrimination between storage, transport and excretion media as well as soft tissues. Taken together, novel response patterns indicated compensation reactions in tissues that are essential for the acute survival of growing animals (heart, skeletal muscle, immune tissues). Furthermore, this is to our knowledge the first study that mapped the gross Zn requirement by clustering tissue Zn concentrations between treatment groups.