In this article, we improve the efficiency of a turbine blade inspection robotic workcell. The workcell consists of a stationary camera and a 6-axis serial robot that is holding a blade and presenting different zones of the blade to the camera for inspection. The problem at hand consists of a 6-DOF (degree of freedom) continuous optimization of the camera placement and a discrete combinatorial optimization of the sequence of inspection poses (images). For each image, all robot configurations (up to eight) are taken into consideration. A novel combined approach is introduced, called blind dynamic particle swarm optimization (BD-PSO), to simultaneously obtain the optimal design for both domains. The objective is to minimize the cycle time of the inspection process, while avoiding any collisions. Even though PSO is vastly used in engineering problems, the novelty of our combinatorial optimization method is in its ability to be used efficiently in traveling salesman problems where the distances between the cities are unknown and subject to change. This highly unpredictable environment is the case of the inspection cell where the cycle time between two images will change for different camera placements.