We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For a C*-algebra A, determining the Cuntz semigroup Cu(A ⊗) in terms of Cu(A) is an important problem, which we approach from the point of view of semigroup tensor products in the category of abstract Cuntz semigroups by analysing the passage of significant properties from Cu(A) to Cu(A)⊗Cu Cu(). We describe the effect of the natural map Cu(A) → Cu(A)⊗Cu Cu() in the order of Cu(A), and show that if A has real rank 0 and no elementary subquotients, Cu(A)⊗Cu Cu() enjoys the corresponding property of having a dense set of (equivalence classes of) projections. In the simple, non-elementary, real rank 0 and stable rank 1 situation, our investigations lead us to identify almost unperforation for projections with the fact that tensoring with is inert at the level of the Cuntz semigroup.
We show how to construct a topological groupoid directly from an inverse semigroup and prove that it is isomorphic to the universal groupoid introduced by Paterson. We then turn to a certain reduction of this groupoid. In the case of inverse semigroups arising from graphs (respectively, tilings), we prove that this reduction is the graph groupoid introduced by Kumjian \et (respectively, the tiling groupoid of Kellendonk). We also study the open invariant sets in the unit space of this reduction in terms of certain order ideals of the underlying inverse semigroup. This can be used to investigate the ideal structure of the associated reduced $C^\ast$-algebra.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.