We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Sextic double solids, double covers of $\mathbb P^3$ branched along a sextic surface, are the lowest degree Gorenstein terminal Fano 3-folds, hence are expected to behave very rigidly in terms of birational geometry. Smooth sextic double solids, and those which are $\mathbb Q$-factorial with ordinary double points, are known to be birationally rigid. In this paper, we study sextic double solids with an isolated compound $A_n$ singularity. We prove a sharp bound $n \leq 8$, describe models for each n explicitly, and prove that sextic double solids with $n> 3$ are birationally nonrigid.
We shall proceed to the study of threefold Mori fibre spaces. This chapter is an introduction to the Sarkisov program, which factorises a birational map of Mori fibre spaces as a composite of elementary maps called Sarkisov links. Corti established it in dimension three. The program twists the birational map into an isomorphism by means of the Noether-Fano inequality. Whereas Hacon and McKernan obtained a new program in an arbitrary dimension, we stick to the traditional approach which fits better into the explicit study. The program stems from the pioneer work of Iskovskikh and Manin on the irrationality of a smooth quartic threefold. We review the rationality problem and discuss the notions of rationality, stable rationality and unirationality. A rational variety has a large number of Mori fibre spaces in its birational class. Oppositely, a variety birational to essentially only one Mori fibre space is said to be birationally rigid. We explain a general strategy for applying the Sarkisov program to the rationality and birational rigidity problem, and demonstrate this by an example due to Corti and Mella which has exactly two birational structures of a Mori fibre space.
The first book on the explicit birational geometry of complex algebraic threefolds arising from the minimal model program, this text is sure to become an essential reference in the field of birational geometry. Threefolds remain the interface between low and high-dimensional settings and a good understanding of them is necessary in this actively evolving area. Intended for advanced graduate students as well as researchers working in birational geometry, the book is as self-contained as possible. Detailed proofs are given throughout and more than 100 examples help to deepen understanding of birational geometry. The first part of the book deals with threefold singularities, divisorial contractions and flips. After a thorough explanation of the Sarkisov program, the second part is devoted to the analysis of outputs, specifically minimal models and Mori fibre spaces. The latter are divided into conical fibrations, del Pezzo fibrations and Fano threefolds according to the relative dimension.
For a general Fano 3-fold of index 1 in the weighted projective space ℙ(1, 1, 1, 1, 2, 2, 3) we construct two new birational models that are Mori fibre spaces in the framework of the so-called Sarkisov program. We highlight a relation between the corresponding birational maps, as a circle of Sarkisov links, visualizing the notion of relations in the Sarkisov program.
The Sarkisov program studies birational maps between varieties that are end products of the Minimal Model Program (MMP) on nonsingular uniruled varieties. If $X$ and $Y$ are terminal $ \mathbb{Q} $-factorial projective varieties endowed with a structure of Mori fibre space, a birational map $f: X\dashrightarrow Y$ is the composition of a finite number of elementary Sarkisov links. This decomposition is in general not unique: two such define a relation in the Sarkisov program. I define elementary relations, and show they generate relations in the Sarkisov program. Roughly speaking, elementary relations are the relations among the end products of suitable relative MMPs of $Z$ over $W$ with $\rho (Z/ W)= 3$.
We introduce a strategy based on Kustin–Miller unprojection that allows us to construct many hundreds of Gorenstein codimension 4 ideals with 9×16 resolutions (that is, nine equations and sixteen first syzygies). Our two basic games are called Tom and Jerry; the main application is the biregular construction of most of the anticanonically polarised Mori Fano 3-folds of Altınok’s thesis. There are 115 cases whose numerical data (in effect, the Hilbert series) allow a Type I projection. In every case, at least one Tom and one Jerry construction works, providing at least two deformation families of quasismooth Fano 3-folds having the same numerics but different topology.
The Nagata automorphism is a kind of complicated automorphism on the affine 3-space . For a long time, it remained unknown whether or not the Nagata automorphism is tame until Shestakov and Umirbaev at last proved that it is not tame in 2004, by purely algebraic methods (e.g. Poisson algebra). In this paper, we consider a certain necessary condition for a given automorphism on to be tame from the point of view of the Sarkisov program established by Corti. Furthermore, by using it, we shall give a new algebro-geometric proof of the non-tameness of the Nagata automorphism.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.