In this paper, the distributional properties and power rates of the Lz, Eci2z, and Eci4z statistics when they are used as item fit statistics were explored. The results were compared to t-transformation of Outfit and Infit mean square. Four sample sizes were selected: 100, 250, 500, and 1000 examinees. The abilities were uniform and normal with mean 0 and standard deviation 1, and uniform and normal with mean –1 and standard deviation 1. The pseudo-guessing parameter was fixed at .25. Two ranges of difficulty parameters were selected: ±1 logits and ±2 logits. Two test lengths were selected: 15 and 30 items. The results showed important differences between the T-infit, T-outfit, Lz, Eci2z, and Eci4z statistics. The T-oufit, T-infit, and Lz statistics showed poor standardization with estimated parameters because their distributional properties were not close to the expected values. However, the Eci2z and Eci4z statistics showed satisfactory standardization on all conditions. Further, the power rates of Eci2z and Eci4z were 5% to 10% higher than the power rates of Lz, T-outfit, and T-infit to detect items that do not fit Rasch model.