Let X1,X2,… be a sequence of independent and identically distributed random variables with some continuous distribution function F. Let L(n) and X(n) denote the nth record time and the nth record value, respectively. We refer to the variables Xi as near-nth-record observations if Xi∈(X(n)-a,X(n)], with a>0, and L(n)<i<L(n+1). In this work we study asymptotic properties of the number of near-record observations. We also discuss sums of near-record observations.