We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We seek a sufficient condition which preserves almost-invariant subspaces under the weak limit of bounded operators. We study the bounded linear operators which have a collection of almost-invariant subspaces and prove that a bounded linear operator on a Banach space, admitting each closed subspace as an almost-invariant subspace, can be decomposed into the sum of a multiple of the identity and a finite-rank operator.
The theory of almost invariant half-spaces for operators on Banach spaces was begun recently and is now under active development. Much less attention has been given to almost invariant half-spaces for operators on Hilbert space, where some techniques and results are available that are not present in the more general context of Banach spaces. In this note, we begin such a study. Our much simpler and shorter proofs of the main theorems have important consequences for the matricial structure of arbitrary operators on Hilbert space.
Let $H^{2}$ be the Hardy space over the bidisk. It is known that Hilbert–Schmidt invariant subspaces of $H^{2}$ have nice properties. An invariant subspace which is unitarily equivalent to some invariant subspace whose continuous spectrum does not coincide with $\overline{\mathbb{D}}$ is Hilbert–Schmidt. We shall introduce the concept of splittingness for invariant subspaces and prove that they are Hilbert–Schmidt.
Let M be a forward-shift-invariant subspace and N a backward-shift-invariant subspace in the Hardy space H2 on the bidisc. We assume that . Using the wandering subspace of M and N, we study the relations between M and N. Moreover we study M and N using several natural operators defined by shift operators on H2.
In this paper we continue to modify and expand a technique due to Enflo for producing nontrivial hyperinvariant subspaces for quasinilpotent operators, and thereby obtain such subspaces for some additional quasinilpotent operators on Hilbert space. We also obtain a structure theorem for a certain class of operators.
We characterize norm closed subspaces $B$ of $\linf (\partial D)$ such that $C(\partial D) B \subset B$ and maximal ones in the family of proper closed subspaces $B$ of $L^\infty(\partial D)$ such that $A(D) B \subset B$, where $A(D)$ is the disk algebra. Analogously, we characterize closed subspaces of $H^\infty$ that are simultaneously invariant under $S$ and $S^\ast$, the forward and the backward shift operators, and maximal invariant subspaces of $H^\infty$.
It is shown that, if F and G are inner functions, (H2 ⊖ FH2)/(H2 ⊖ FH2) ∩ GH2 is n-dimensional if and only if G is a Blaschke product of degree n. This is an extension of the well known result for the case (H2 ⊖ FH2) ∩ GH2 = {0}.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.