The Main Conjecture of Iwasawa theory for an elliptic curve $E$ over $\mathbb{Q}$ and the anticyclotomic $\mathbb{Z}_p$-extension of an imaginary quadratic field $K$ was studied in \cite{bertolini_darmon}, in the case where $p$ is a prime of ordinary reduction for $E$. Analogous results are formulated, and proved, in the case where $p$ is a prime of supersingular reduction. The foundational study of supersingular main conjectures carried out by Perrin-Riou, Pollack, Kurihara, Kobayashi and Iovita and Pollack are required to handle this case in which many of the simplifying features of the ordinary setting break down.