The aim of this paper was to study the relationship between milk flow emission variables recorded during milking of dairy goats with variables related to milking routine, goat physiology, milking parameters and milking machine characteristics, to determine the variables affecting milking performance and help the goat industry pinpoint farm and milking practices that improve milking performance. In total, 19 farms were visited once during the evening milking. Milking parameters (vacuum level (VL), pulsation ratio and pulsation rate, vacuum drop), milk emission flow variables (milking time, milk yield, maximum milk flow (MMF), average milk flow (AVMF), time until 500 g/min milk flow is established (TS500)), doe characteristics of 8 to 10 goats/farm (breed, days in milk and parity), milking practices (overmilking, overstripping, pre-lag time) and milking machine characteristics (line height, presence of claw) were recorded on every farm. The relationships between recorded variables and farm were analysed by a one-way ANOVA analysis. The relationships of milk yield, MMF, milking time and TS500 with goat physiology, milking routine, milking parameters and milking machine design were analysed using a linear mixed model, considering the farm as the random effect. Farm was significant (P<0.05) in all the studied variables. Milk emission flow variables were similar to those recommended in scientific studies. Milking parameters were adequate in most of the farms, being similar to those recommended in scientific studies. Few milking parameters and milking machine characteristics affected the tested variables: average vacuum level only showed tendency on MMF, and milk pipeline height on TS500. Milk yield (MY) was mainly affected by parity, as the interaction of days in milk with parity was also significant. Milking time was mainly affected by milk yield and breed. Also significant were parity, the interaction of days in milk with parity and overstripping, whereas overmilking showed a slight tendency. We concluded that most of the studied variables were mainly related to goat physiology characteristics, as the effects of milking parameters and milking machine characteristics were scarce.