Time inconsistency is an essential feature of many policy problems. This paper presents and compares three methods for computing Markov-perfect optimal policies in stochastic nonlinear business cycle models. The methods considered include value function iteration, generalized Euler equations, and parameterized shadow prices. In the context of a business cycle model in which a fiscal authority chooses government spending and income taxation optimally, although lacking the ability to commit, we show that the solutions obtained using value function iteration and generalized Euler equations are somewhat more accurate than that obtained using parameterized shadow prices. Among these three methods, we show that value function iteration can be applied easily, even to environments that include a risk-sensitive fiscal authority and/or inequality constraints on government spending. We show that the risk-sensitive fiscal authority lowers government spending and income taxation, reducing the disincentive to accumulate wealth that households face.