We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study large-deviation probabilities of Telecom processes appearing as limits in a critical regime of the infinite-source Poisson model elaborated by I. Kaj and M. Taqqu. We examine three different regimes of large deviations (LD) depending on the deviation level. A Telecom process
$(Y_t)_{t \ge 0}$
scales as
$t^{1/\gamma}$
, where t denotes time and
$\gamma\in(1,2)$
is the key parameter of Y. We must distinguish moderate LD
${\mathbb P}(Y_t\ge y_t)$
with
$t^{1/\gamma} \ll y_t \ll t$
, intermediate LD with
$ y_t \approx t$
, and ultralarge LD with
$ y_t \gg t$
. The results we obtain essentially depend on another parameter of Y, namely the resource distribution. We solve completely the cases of moderate and intermediate LD (the latter being the most technical one), whereas the ultralarge deviation asymptotics is found for the case of regularly varying distribution tails. In all the cases considered, the large-deviation level is essentially reached by the minimal necessary number of ‘service processes’.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.