We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we prove the continuity of iteration operators $\mathcal {J}_n$ on the space of all continuous self-maps of a locally compact Hausdorff space X and generally discuss dynamical behaviors of them. We characterize their fixed points and periodic points for $X=\mathbb {R}$ and the unit circle $S^1$. Then we indicate that all orbits of $\mathcal {J}_n$ are bounded; however, we prove that for $X=\mathbb {R}$ and $S^1$, every fixed point of $\mathcal {J}_n$ which is non-constant and equals the identity on its range is not Lyapunov stable. The boundedness and the instability exhibit the complexity of the system, but we show that the complicated behavior is not Devaney chaotic. We give a sufficient condition to classify the systems generated by iteration operators up to topological conjugacy.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.