Solid-oxide fuel cells (SOFCs) are an energy conversion technology with unique potential to have the highest energy conversion efficiency with the least environmental impact, as well as broad fuel flexibility from renewable to conventional fuels. Lowering the SOFC operating temperature will further lower system and operational costs, increase long-term durability, and allow more rapid start-up, providing feasibility for load following and transportation applications. Unfortunately, at reduced temperatures, the thermally activated nature of ionic conduction and electrochemical reactions increase polarization resistances, thus decreasing cell and system performance. However, lower operating temperatures also create the opportunity to employ nanostructured materials with higher surface area-to-volume ratios and greater interphase and interfacial regions, which can greatly enhance electrochemical performance. Here, we review recent progress in the development of various nanostructured electrodes and electrolytes and discuss their effects on the enhancement of the electrocatalytic activity of oxygen reduction and fuel oxidation, as well as oxygen-ion conduction, in order to achieve high-performance low-temperature SOFCs.