The study was undertaken to estimate the genetic parameters of lactation curve parameters of Wood's function in Jersey crossbred cattle using the Bayesian approach. Data on 33,906 fortnightly test day milk yields of 1,718 lactation records of Jersey crossbred cows, maintained at the ICAR-National Dairy Research Institute in West Bengal, were collected over a period of 40 years. The lactation curve parameters including ‘a’ (initial milk yield after calving), ‘b’ (ascending slope up to peak yield) and ‘c’ (descending slope after peak yield) and lactation curve traits, peak yield (ymax), time of peak yield (tmax) and persistency of milk yield (P) of individual cow for each lactation were estimated using the incomplete gamma function (Wood's model) by fitting the Gauss–Newton algorithm as an iteration method using PROC NLIN procedure of SAS 9.3. Variance components and genetic parameters of lactation curve parameters/traits were estimated by a repeatability animal model using the Bayesian approach. Estimates of heritabilities were found to be 0.18 ± 0.05, 0.09 ± 0.03 and 0.11 ± 0.04 for parameters ‘a’, ‘b’ and ‘c’, respectively and 0.24 ± 0.05, 0.12 ± 0.04, and 0.15 ± 0.05 for ymax, tmax and P, respectively. Repeatability estimates were 0.31 ± 0.03, 0.21 ± 0.04 and 0.30 ± 0.04 for parameters ‘a’, ‘b’ and ‘c’ respectively and 0.39 ± 0.03, 0.24 ± 0.03 and 0.37 ± 0.03 for ymax, tmax and p, respectively. Genetic correlations among lactation curve parameters/traits ranged from −0.75 to 0.95. Existence of genetic correlations among lactation curve parameters/traits indicated substantial genetic and physiological relationships among lactation curve parameters/traits of Jersey crossbred cattle.