Copper adsorption on a hydroxy-aluminum-hectorite complex (OH-Al-hectorite) at pH 4.5, 5.7, 7.4, and 7.8 was examined by means of electron spin resonance. The spectra of these samples were compared to those of Cu2+-hectorite and various aluminum hydrous oxides. Copper on the OH-Al-hectorite in aqueous gels occurred as mobile Cu(H20)62+ and chemisorbed to discrete sites of the OH-Al interlayer. As pH was increased, the ratio of chemisorbed to mobile Cu2+ increased. At pHs above 7 the solubility product of Cu(OH)2 was exceeded, but chemisorbed Cu2+ remained as the dominant species. These results contrast with the precipitation of Cu observed on microcry stalline gibbsite above pH 5 and indicate that the interlayer OH-A1 retained more Cu2+ on discrete sites. The greater adsorption capacity probably resulted in part from a higher specific surface area. Electron spin resonance spectra of Cu2+ in air-dried films of the OH-Al-hectorite at pH 4.5 and 7.4 showed Cu2+ in square planar symmetry, oriented with the z-axis perpendicular to the OH-Al-hectorite a-b plane. At the higher pH, the spectrum resembled that of Cu(OH)42- on alumina, suggesting a ligand exchange mechanism for Cu2+ adsorption on the complex.