High-resolution transmission electron microscopy (HRTEM), selected-area electron diffraction (SAED), annular dark-field scanning transmission electron microscope (STEM) images, and electron nano-diffraction were used to examine structures of synthetic 2- and 6-line ferrihydrite specimens. HRTEM images of 2-line ferrihydrite (2LFh) show scattered small (~1-3 nm) areas with lattice fringes surrounded by areas free of fringes. All SAED patterns show two bright rings corresponding to d-values of ~0.15 and 0.25 nm; each ring has a conspicuous shoulder on each side. Faint rings corresponding to d-values of 0.08, 0.095, 0.100, 0.106-0.114 (very broad ring), and 0.122 nm are visible in strongly exposed SAED patterns. Nanodiffraction patterns show conspicuous streaks and a lack of superlattice formation.
HRTEM images of 6-line ferrihydrite (6LFh) display larger crystallites (typically ~5-6 nm) with lattice fringes visible in many thin areas. SAED patterns show rings corresponding to d-values of 0.148, 0.156, 0.176, 0.202, 0.227, and 0.25-0.26 nm and a shoulder extending between d-values of ~0.25 and 0.32 nm. Faint rings corresponding to d-values of 0.086, 0.093, 0.107, 0.112, 0.119, 0.125, and 0.135 nm are visible in strongly exposed SAED patterns. Small quantities of hematite, magnetite or maghemite, and an acicular material tentatively identified as goethite were observed in the 6-line ferrihydrite, but these quantities do not contribute significantly to the overall diffracted intensity from the sample.