We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The aim of this paper is to present a plane-stress damage model based on the Classical Lamination Theory (CLT), developed for polymer fibre-based composite. The proposed numerical model utilises a damage mechanics methodology coupled with fracture mechanics to predict composite failure, particularly under quasi-static and dynamic loadings. In addition, the proposed constitutive equations consider a single secant modulus to describe its tensile and compressive modulus, as opposed to the physically proposed tier models for polymer fibres which possesses a ‘skin-core’ structure. The result of single element and coupon-level modelling showed excellent correlation with the experimental results. In addition, it was also found that the proposed numerical model showed considerable accuracy on the response of the composite under low and high velocity impact loadings.
The second chapter deals with the fundamental of continuum mechanics. It describes stresses and strains in a continuum. This is followed by fundamental laws of mechanics and constitutive relations. Elasticity and Hooke's law are described. Next, the chapter describes poroelasticity as well as poroplasticity, followed by fracture mechanics. Finally, rock physics models as applied to pore pressure detection are described.
Structures can fail in different ways so that one needs to examine a variety of failure modes. In this chapter we will consider (1) a number of the commonly used static failure theories, (2) fatigue failure under alternating loads, and (3) fracture theory. We will also briefly discuss how nondestructive inspections can be used in conjunction with crack growth laws to keep structures safe while in use. Another way that structures can fail is through a loss of stability. The sudden buckling of columns, also called a bifurcation type of instability, will be described as well as other types of instabilities such as limit-load instabilities and snap-through buckling instabilities.
Based on class-tested material, this concise yet comprehensive treatment of the fundamentals of solid mechanics is ideal for those taking single-semester courses on the subject. It provides interdisciplinary coverage of the key topics, combining solid mechanics with structural design applications, mechanical behavior of materials, and the finite element method. Part I covers basic theory, including the analysis of stress and strain, Hooke's law, and the formulation of boundary-value problems in Cartesian and cylindrical coordinates. Part II covers applications, from solving boundary-value problems, to energy methods and failure criteria, two-dimensional plane stress and strain problems, antiplane shear, contact problems, and much more. With a wealth of solved examples, assigned exercises, and 130 homework problems, and a solutions manual available online, this is ideal for senior undergraduates studying solid mechanics, and graduates taking introductory courses in solid mechanics and theory of elasticity, across aerospace, civil and mechanical engineering, and materials science.
The previous chapter covered factors affecting strength, in terms of the stresses at which damage and failure occur in composites. In many situations, however, it is the energy that is absorbed within the material while fracture takes place that is of prime importance. A tough material is one for which large amounts of energy are required to cause fracture. Some loading configurations, such as a component being struck by a projectile, provide only a finite amount of energy that could cause failure. In fact, there are many situations in which toughness, rather than strength, is the key property determining whether the material is suitable. In this chapter, a brief outline is given of the basics of fracture mechanics, with particular reference to the energetics of interfacial damage. This is followed by an appraisal of the sources of energy absorption in composites. Finally, progressive crack growth in composites is examined under conditions for which fast fracture is not energetically favoured (sub-critical crack growth).
Surface exfoliation was observed on single-crystal silicon surface under the action of compressed plasma flow (CPF). This phenomenon is mainly attributed to the strong transient thermal stress impact induced by CPF. To gain a better understanding of the mechanism, a micro scale model combined with thermal conduction and linear elastic fracture mechanics was built to analyze the thermal stress distribution after energy deposition. After computation with finite element method, J integral parameter was applied as the criterion for fracture initiation evaluation. It was demonstrated that the formation of surface exfoliation calls for specific material, crack depth, and CPF parameter. The results are potentially valuable for plasma/matter interaction understanding and CPF parameter optimization.
The present work addresses the competition between dislocation plasticity and stress-induced martensitic transformations in crack affected regions of a pseudoelastic NiTi miniature compact tension specimen. For this purpose X-ray line profile analysis was performed after fracture to identify dislocation densities and remnant martensite volume fractions in regions along the crack path. Special emphasis was placed on characterizing sub fracture surface zones to obtain depth profiles. The stress affected zone in front of the crack-tip is interpreted in terms of a true plastic zone associated with dislocation plasticity and a pseudoelastic zone where stress-induced martensite can form. On unloading, most of the stress-induced martensite transforms back to austenite but a fraction of it is stabilized by dislocations in both, the irreversible martensite and the surrounding austenite phase. The largest volume fraction of the irreversible or remnant martensite along with the highest density of dislocations in this phase was found close to the primary crack-tip. With increasing distance from the primary crack-tip both, the dislocation density and the volume fraction of irreversible martensite decrease to lower values.
The fracture toughness of NiAl single crystals is evaluated with a new method based on the J-integral concept. The new technique allows the measurement of continuous crack resistance curves at the microscale by continuously recording the stiffness of the microcantilevers with a nanoindenter. The experimental procedure allows the determination of the fracture toughness directly at the onset of stable crack growth. Experiments were performed on notched microcantilevers which were prepared by focused ion beam milling from NiAl single crystals. Stoichiometric NiAl crystals and NiAl crystals containing 0.14 wt% Fe were investigated in the so-called “hard” orientation. The fracture toughness was evaluated to be 6.4 ± 0.5 MPa m1/2 for the stoichiometric sample and 7.1 ± 0.5 MPa m1/2 for the iron containing sample, indicating that the addition of iron enhances the ductility. This effect is intensified with ongoing crack propagation where the Fe-containing sample exhibits a stronger crack resistance behavior than the stoichiometric NiAl single crystal. These findings are in good agreement with macroscopic fracture toughness measurements, and validate the new micromechanical testing approach.
Measurements of the mechanical properties of snow are essential for improving our understanding and the prediction of snow failure and hence avalanche release. We performed fracture mechanical experiments in which a crack was initiated by a saw in a weak snow layer underlying cohesive snow slab layers. Using particle tracking velocimetry (PTV), the displacement field of the slab was determined and used to derive the mechanical energy of the system as a function of crack length. By fitting the estimates of mechanical energy to an analytical expression, we determined the slab effective elastic modulus and weak layer specific fracture energy for 80 different snowpack combinations, including persistent and nonpersistent weak snow layers. The effective elastic modulus of the slab ranged from 0.08 to 34 MPa and increased with mean slab density following a power-law relationship. The weak layer specific fracture energy ranged from 0.08 to 2.7 J m−2 and increased with overburden. While the values obtained for the effective elastic modulus of the slab agree with previously published low-frequency laboratory measurements over the entire density range, the values of the weak layer specific fracture energy are in some cases unrealistically high as they exceeded those of ice. We attribute this discrepancy to the fact that our linear elastic approach does not account for energy dissipation due to non-linear parts of the deformation in the slab and/or weak layer, which would undoubtedly decrease the amount of strain energy available for crack propagation.
In this paper, we present numerical computational methods for solving the fracture problem in brittle and ductile materials with no prior knowledge of the topology of crack path. Moreover, these methods are capable of modeling the crack initiation. We perform numerical simulations of pieces of brittle material based on global approach and taken into account the thermal effect in crack propagation. On the other hand, we propose also a numerical method for solving the fracture problem in a ductile material based on elements deletion method and also using thermo-mechanical behavior and damage laws. In order to achieve the last purpose, we simulate the orthogonal cutting process.
In this paper, the electro-elastic fields in a functionally gradient piezoelectric strip with an internal semi-infinite electrode are analyzed by using Fourier transform and Wiener-Hopf technique. The exact forms of asymptotic solutions and intensity factor and energy are obtained. The energy density criterion is proposed to study the fracture behavior near the electrode tip. The fracture initiation angle depends on the fracture resistance of the piezoelectric ceramic, bonding strength between piezoelectric and electrode, and the direction of least energy density factor S inside the piezoceramic.
The present paper shows the applicability of the Dual Boundary Element Method to analyze plastic, visco-plastic and creep behavior in fracture mechanics problems. Several models with a crack, including a square plate, a holed plate and a notched plate are analyzed. Special attention is taken when the discretization of the domain is done. In Fact, for the plasticity and viscoplasticity cases only the region susceptible to yielding was discretized, whereas, the creep case required the discretization of the whole domain. The proposed formulation is presented as an alternative technique to study this kind of non-linear problems. Results from the present formulation are compared to those of the well-established Finite Element Technique, and they are in good agreement. Important fracture mechanic parameters such as KI, KII, J- and C- integrals are also included. In general, the results, for the plastic, visco-plastic and creep cases, show that the highest stress concentrations are in the vicinity of the crack tip and they decrease as the distance from the crack tip is increased.
In regard to the sustainability of future cities, an increase in sustainable energysources needs to be managed. Therefore, the German government decided on increasing theratio of green energy up to 20% by 2020. In accordance with this, offshore wind energyparks will be constructed, as they provide the advantage of lasting air cleanliness andpreserving natural resources. To ensure construction safety, wind energy mills areconstructed using ductile steels of large thickness. Here, an application of high-strengthsteels provides the possibility of reducing the amount of material while constructionsafety is still ensured. Considering the long life cycle of wind energy mills’ foundationstructures and the recyclability of the steel grades used, their construction becomes arelevant factor in reducing CO2 emissions. Furthermore, the use of less material reducesCO2 emissions.Due to existing safety concepts, however, the application of high-strength steels is onlyconditionally allowed. Thus, the current study concerns the development of a safetyconcept based on the existing concepts to allow the application of high-strength steels.Furthermore, as the structural steel parts need to be joined, an energy-efficient weldingprocess is utilised: electron beam welding. The structural steel parts and weld joints areinvestigated with respect to their mechanical properties by analysing their loadability incombination with safety concepts. The load on the material is evaluated to ensureconstruction safety. In addition to the investigation of safety requirements, the suppliedmechanical properties are investigated. As the weld joints show different properties fromthe base material, the joints are considered the critical part. The joints areinvestigated concerning strength and toughness. Afterwards the mechanical properties arecorrelated with the wind energy structures. The prevention of failure is fulfilled whenthe mechanical properties of the weld joints exceed the required mechanicalproperties.
An improvement in the life time calculation is aspired by the characterisation of thelife time behaviour of a typically lightweight aircraft titanium alloy by describing themicrostructure. Therefore, extensive research on a Ti-6-4 fitting element has been carriedout. In addition to static tensile tests, rotating bending tests and fracture mechanicaltests, component tests with constant and variable load were performed. Simultaneously, themicrostructures of the specimens and tested components are extensively analysed at severalpoints including the lug area, as well as, the specimen’s microstructure taken out of thelower link fitting. A common consideration of life time results as well as results of themicrostructure in the life time calculation shows the possibilities for more precise lifetime estimation.
In the framework of the linear fracture theory, a commonly-used toolto describe the smooth evolution of a crack embedded in a bounded domain Ω is the so-calledenergy release rate defined as the variation of the mechanicalenergy with respect to the crack dimension. Precisely, thewell-known Griffith's criterion postulates the evolution of thecrack if this rate reaches a critical value. In this work, in the anti-plane scalar case, weconsider the shape design problem which consists in optimizing thedistribution of two materials with different conductivities in Ω in order to reducethis rate. Since this kind of problem is usually ill-posed, wefirst derive a relaxation by using the classical non-convexvariational method. The computation of the quasi-convex envelope ofthe cost is performed by using div-curl Young measures, leads to anexplicit relaxed formulation of the original problem, and exhibits fine microstructure in the form offirst order laminates. Finally, numerical simulations suggest thatthe optimal distribution permits to reduce significantly the value of the energy release rate.
The fractography and conditions of propagation of joints that cut Devonian siltstones in the Appalachian Plateau, New York, and Eocene chalks from the Beer Sheva Syncline, Israel, are investigated. The joints cutting the siltstones are marked by S-type and C-type plumes, and the joints cutting the Lower Eocene and Middle Eocene chalks are marked by coarse and delicate plumes, respectively. The four plume types propagated under sub-critical (slow propagation) conditions. On the semi-quantitative fracture velocity (v) versus the tensile stress intensity (KI) curves, the S and C plume types fall in the KI=0.073–0.79 MPa m1/2 and v=2×10−4–10−2 m/s and KI=0.073–0.79 MPa m1/2 and v=10−6–10−4 m/s ranges respectively. The coarse and delicate plumes fall in the KI=0.03–0.17 MPa m1/2 and v=10−6–4×10−5 m/s and KI=0.03–0.17 MPa m1/2 and v=10−4–5×10−3 m/s ranges, respectively. Generally, slow plumes are relatively short, show periodicity, and typically exhibit superposition of arrest marks. On the other hand, faster plumes are longer and continuous, occur particularly in thinner layers, and show no superposition of arrest marks. There is a clear distinction between two en échelon segmentation end-members in the joint fringe, the ‘discontinuous breakdown type’ and the ‘continuous breakdown type’. There are also ‘transitional’ variations between the end-members. Only curved ‘discontinuous breakdown type’ boundaries of en échelon fringes can be equated with mirror boundaries.
Element-free Galerkin method (EFGM) based on moving least-square curve fitting concept is presented and applied to elastic fracture problems. Because no element connectivity data are needed, EFGM is very convenient and effective numerical method for crack growth analysis. This paper is intended as an investigation of crack trajectory for different notch locations under three-point bending test. The initial crack growth angles obtained by element-free Galerkin method in comparison with those obtained by lab test reveal that both results are very close. However, numerical results also show that the location of an original notch can stronger affect the variation of crack path for different increment. The stress intensity factors (SIF) of cracks under three-point bending test with different increment are also investigated by EFGM.
La démonstration de la sécurité des structures aéronautiques repose sur des calculs de scénarii de fissuration en fatigue. Les calculs de propagation doivent prendre en compte la présence éventuelle de contraintes résiduelles qui sont induites par les procédés d'assemblage des pièces. Les alésages des jonctions de fuselage sont concernés par cet aspect. Une approche prévisionnelle de la fissuration en fatigue des alésages expansés et montés en interférence est présentée. L'approche est validée sur des essais représentatifs des cas de service. Une application de l'approche à des calculs d'aide à la conception est présentée.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.