The frontoparietal control network, anatomically and functionally interposed between the dorsal attention network and default mode network, underpins executive control functions. Individuals with attention-deficit/hyperactivity disorder (ADHD) commonly exhibit deficits in executive functions, which are mainly mediated by the frontoparietal control network. Involvement of the frontoparietal control network based on the anterior prefrontal cortex in neurobiological mechanisms of ADHD has yet to be tested. We used resting-state functional MRI and seed-based correlation analyses to investigate functional connectivity of the frontoparietal control network in a sample of 25 children with ADHD (7–14 years; mean 9.94±1.77 years; 20 males), and 25 age-, sex-, and performance IQ-matched typically developing (TD) children. All participants had limited in-scanner head motion. Spearman’s rank correlations were used to test the associations between altered patterns of functional connectivity with clinical symptoms and executive functions, measured by the Conners’ Continuous Performance Test and Spatial Span in the Cambridge Neuropsychological Test Automated Battery. Compared with TD children, children with ADHD demonstrated weaker connectivity between the right anterior prefrontal cortex (PFC) and the right ventrolateral PFC, and between the left anterior PFC and the right inferior parietal lobule. Furthermore, this aberrant connectivity of the frontoparietal control network in ADHD was associated with symptoms of impulsivity and opposition-defiance, as well as impaired response inhibition and attentional control. The findings support potential integration of the disconnection model and the executive dysfunction model for ADHD. Atypical frontoparietal control network may play a pivotal role in the pathophysiology of ADHD. (JINS, 2015, 21, 271–284)