We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Understanding the generation of mechanical stress in drying, particle-laden films is important for a wide range of industrial processes. One way to study these stresses is through the cantilever experiment, whereby a thin film is deposited onto the surface of a thin plate that is clamped at one end to a wall. The stresses that are generated in the film during drying are transmitted to the plate and drive bending. Mathematical modelling enables the film stress to be inferred from measurements of the plate deflection. The aim of this paper is to present simplified models of the cantilever experiment that have been derived from the time-dependent equations of continuum mechanics using asymptotic methods. The film is described using nonlinear poroelasticity and the plate using nonlinear elasticity. In contrast to Stoney-like formulae, the simplified models account for films with non-uniform thickness and stress. The film model reduces to a single differential equation that can be solved independently of the plate equations. The plate model reduces to an extended form of the Föppl-von Kármán (FvK) equations that accounts for gradients in the longitudinal traction acting on the plate surface. Consistent boundary conditions for the FvK equations are derived by resolving the Saint-Venant boundary layers at the free edges of the plate. The asymptotically reduced models are in excellent agreement with finite element solutions of the full governing equations. As the Péclet number increases, the time evolution of the plate deflection changes from $t$ to $t^{1/2}$, in agreement with experiments.
We prove that, in the limit of vanishing thickness, equilibrium configurations of inhomogeneous, three-dimensional non-linearly elastic rods converge to equilibrium configurations of the variational limit theory. More precisely, we show that, as $h\searrow 0$, stationary points of the energy , for a rod $\Omega _h\subset {\open R}^3$ with cross-sectional diameter h, subconverge to stationary points of the Γ-limit of , provided that the bending energy of the sequence scales appropriately. This generalizes earlier results for homogeneous materials to the case of materials with (not necessarily periodic) inhomogeneities.
In this paper, He's homotopy perturbation method is utilized to obtain the analytical solution for the nonlinear natural frequency of functionally graded nanobeam. The functionally graded nanobeam is modeled using the Eringen's nonlocal elasticity theory based on Euler-Bernoulli beam theory with von Karman nonlinearity relation. The boundary conditions of problem are considered with both sides simply supported and simply supported-clamped. The Galerkin's method is utilized to decrease the nonlinear partial differential equation to a nonlinear second-order ordinary differential equation. Based on numerical results, homotopy perturbation method convergence is illustrated. According to obtained results, it is seen that the second term of the homotopy perturbation method gives extremely precise solution.
This paper is concerned with the development of an efficient algorithm for the analytic solutions of nonlinear fractional differential equations. The proposed algorithm Laplace homotopy analysis method (LHAM) is a combined form of the Laplace transform method with the homotopy analysis method. The biggest advantage the LHAM has over the existing standard analytical techniques is that it overcomes the difficulty arising in calculating complicated terms. Moreover, the solution procedure is easier, more effective and straightforward. Numerical examples are examined to demonstrate the accuracy and efficiency of the proposed algorithm.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.