We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let Σ be a σ-algebra of subsets of a set Ω and $B(\Sigma)$ be the Banach space of all bounded Σ-measurable scalar functions on Ω. Let $\tau(B(\Sigma),ca(\Sigma))$ denote the natural Mackey topology on $B(\Sigma)$. It is shown that a linear operator T from $B(\Sigma)$ to a Banach space E is Bochner representable if and only if T is a nuclear operator between the locally convex space $(B(\Sigma),\tau(B(\Sigma),ca(\Sigma)))$ and the Banach space E. We derive a formula for the trace of a Bochner representable operator $T:B({\cal B} o)\rightarrow B({\cal B} o)$ generated by a function $f\in L^1({\cal B} o, C(\Omega))$, where Ω is a compact Hausdorff space.
An F-measure on a Cartesian product of algebras of sets is a scalar-valued function which is a scalar measure independently in each coordinate. It is demonstrated that an F-measure on a product of algebras determines an F-measure on the product of the corresponding σ-algebras if and only if its Fréchet variation is finite. An analogous statement is obtained in a framework of fractional Cartesian products of algebras, and a measurement of p-variation of F-measures, based on Littlewood-type inequalities, is discussed.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.