We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that the singularities of the twisted Kähler–Einstein metric arising as the longtime solution of the Kähler–Ricci flow or in the collapsed limit of Ricci-flat Kähler metrics are intimately related to the holomorphic sectional curvature of reference conical geometry. This provides an alternative proof of the second-order estimate obtained by Gross, Tosatti, and Zhang (2020, Preprint, arXiv:1911.07315) with explicit constants appearing in the divisorial pole.
Let $Y$ be a compact Kähler normal space and let $\unicode[STIX]{x1D6FC}\in H_{\mathit{BC}}^{1,1}(Y)$ be a Kähler class. We study metric properties of the space ${\mathcal{H}}_{\unicode[STIX]{x1D6FC}}$ of Kähler metrics in $\unicode[STIX]{x1D6FC}$ using Mabuchi geodesics. We extend several results of Calabi, Chen, and Darvas, previously established when the underlying space is smooth. As an application, we analytically characterize the existence of Kähler–Einstein metrics on $\mathbb{Q}$-Fano varieties, generalizing a result of Tian, and illustrate these concepts in the case of toric varieties.
We use the classical Perron envelope method to show a general existence theorem to degenerate complex Monge–Ampére type equations on compact Kähler manifolds.
We study the Chern-Ricci flow, an evolution equation of Hermitian metrics, on a family of Oeljeklaus–Toma $\left( \text{OT-} \right)$ manifolds that are non-Kähler compact complex manifolds with negative Kodaira dimension. We prove that after an initial conformal change, the flow converges in the Gromov–Hausdorff sense to a torus with a flat Riemannian metric determined by the $\text{OT}$-manifolds themselves.
In this paper, we consider a generalized Kähler–Einstein equation on a Kähler manifold $M$. Using the twisted $\mathcal{K}$–energy introduced by Song and Tian, we show that the existence of generalized Kähler–Einstein metrics with semi–positive twisting (1, 1)–form $\theta$ is also closely related to the properness of the twisted $\mathcal{K}$-energy functional. Under the condition that the twisting form $\theta$ is strictly positive at a point or $M$ admits no nontrivial Hamiltonian holomorphic vector field, we prove that the existence of generalized Kähler–Einstein metric implies a Moser–Trudinger type inequality.
We introduce a wide subclass $\mathcal{F}\left( X,\,\omega \right)$ of quasi-plurisubharmonic functions in a compact Kähler manifold, on which the complex Monge-Ampère operator is well defined and the convergence theorem is valid. We also prove that $\mathcal{F}\left( X,\,\omega \right)$ is a convex cone and includes all quasi-plurisubharmonic functions that are in the Cegrell class.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.