Eukaryote transcription is controlled by regulatory DNA sequences and transcription factors, so transcriptional control of gene plays a pivotal role in gene expression. In this study, we identified the region of the CYP6B6 gene promoter of Helicoverpa armigera which responds to the plant secondary toxicant 2-tridecanone. Transient transfection assay results from five of stepwise deletion fragments linked to the luciferase reporter gene revealed that the promoter activity of each CYP6B6 fragment was significantly higher than that of their basal activity after the Sf9 cells were treated with 2-tridecanone. Among all, the fragment spanning −373 to +405 bp of the CYP6B6 promoter showed an obviously 2-tridecanone inducibility (P<0.0001), which might have the 2-tridecanone responsive element based on promoter activity. Electrophoretic mobility shift assays revealed that the nuclear protein extracted from midgut of the 6th instar larva of H. armigera, reared on 10 mg 2-tridecanone per gram artificial diet for 48 h, could specifically bind to the active region from −373 to 21 bp of the CYP6B6 promoter. The combination feature also appeared when using a shorter fragment from −292 to −154 bp of the CYP6B6 promoter. Taken together, we found a 2-tridecanone core responsive region between −292 and −154 bp of the CYP6B6 promoter. This may lead us to a better understanding of transcriptional mechanism of P450 gene and provide very useful information for the pest control.