We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove the existence of a power structure over the Grothendieck ring of geometric dg categories. We show that a conjecture by Galkin and Shinder (proved recently by Bergh, Gorchinskiy, Larsen and Lunts) relating the motivic and categorical zeta functions of varieties can be reformulated as a compatibility between the motivic and categorical power structures. Using our power structure, we show that the categorical zeta function of a geometric dg category can be expressed as a power with exponent the category itself. We give applications of our results for the generating series associated with Hilbert schemes of points, categorical Adams operations and series with exponent a linear algebraic group.
The sheaf-function correspondence identifies the group of constructible functions on a real analytic manifold M with the Grothendieck group of constructible sheaves on M. When M is a finite dimensional real vector space, Kashiwara-Schapira have recently introduced the convolution distance between sheaves of $\mathbf {k}$-vector spaces on M. In this paper, we characterize distances on the group of constructible functions on a real finite dimensional vector space that can be controlled by the convolution distance through the sheaf-function correspondence. Our main result asserts that such distances are almost trivial: they vanish as soon as two constructible functions have the same Euler integral. We formulate consequences of our result for Topological Data Analysis: there cannot exist nontrivial additive invariants of persistence modules that are continuous for the interleaving distance.
The purpose of this note is to establish isomorphisms up to bounded torsion between relative $K_{0}$-groups and Chow groups with modulus as defined by Binda and Saito.
The K-theoretical aspect of the commutative Bezout rings is established using the arithmetical properties of the Bezout rings in order to obtain a ring of all Smith normal forms of matrices over the Bezout ring. The internal structure and basic properties of such rings are discussed as well as their presentations by the Witt vectors. In a case of a commutative von Neumann regular rings the famous Grothendieck group K0(R) obtains the alternative description.
Let (A, ) be a local hypersurface with an isolated singularity. We show that Hochster's theta pairing θA vanishes on elements that are numerically equivalent to zero in the Grothendieck group of A under the mild assumption that Spec A admits a resolution of singularities. This extends a result by Celikbas-Walker. We also prove that when dimA = 3, Hochster's theta pairing is positive semi-definite. These results combine to show that the counter-example of Dutta-Hochster-McLaughlin to the general vanishing of Serre's intersection multiplicity exists for any three dimensional isolated hypersurface singularity that is not a UFD and has a desingularization. We also show that, if A is three dimensional isolated hypersurface singularity that has a desingularization, the divisor class group is finitely generated torsion-free. Our method involves showing that θA gives a bivariant class for the morphism Spec (A/) → Spec A.
In this work, we s uggest a defnition for the category of mixed motives generated by the motive h1 (E) for E an elliptic curve without complex multiplication. We then compute the cohomology of this category. Modulo a strengthening of the Beilinson-Soulé conjecture, we show that the cohomology of our category agrees with the expected motivic cohomology groups. Finally for each pure motive (Symnh1 (E)) (–1) we construct families of nontrivial motives whose highest associated weight graded piece is (Symnh1 (E)) (–1).
We develop some basic homological theory of hopfological algebra as defined by Khovanov [Hopfological algebra and categorification at a root of unity: the first steps, Preprint (2006), arXiv:math/0509083v2]. Several properties in hopfological algebra analogous to those of usual homological theory of DG algebras are obtained.
We study the K′-theory of a CM Henselian local ring R of finite Cohen-Macaulay type. We first describe a long exact sequence involving the groups K′i(R) and the K-groups of certain other rings, including the Auslander algebra. By examining the terms and maps in the sequence, we obtain information about K′(R).
The main goal of this paper is to deduce (from a recent resolution of singularities result of Gabber) the following fact: (effective) Chow motives with ℤ[1/p]-coefficients over a perfect field k of characteristic p generate the category DMeffgm[1/p] (of effective geometric Voevodsky’s motives with ℤ[1/p]-coefficients). It follows that DMeffgm[1/p] can be endowed with a Chow weight structure wChow whose heart is Choweff[1/p] (weight structures were introduced in a preceding paper, where the existence of wChow for DMeffgmℚ was also proved). As shown in previous papers, this statement immediately yields the existence of a conservative weight complex functor DMeffgm[1/p]→Kb (Choweff [1/p]) (which induces an isomorphism on K0-groups), as well as the existence of canonical and functorial (Chow)-weight spectral sequences and weight filtrations for any cohomology theory on DMeffgm[1/p] . We also mention a certain Chow t-structure for DMeff−[1/p] and relate it with unramified cohomology.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.