Antarctica was once considered biologically isolated, surrounded by oceanic barriers (Fraser et al. 2018). However, floating materials such as kelp rafts (Fraser et al. 2018, Avila et al. 2020), wood (Lewis et al. 2005) and plastics (Avila et al. 2020) are now known to cross these barriers and reach Antarctic shores. Such incursions might enable non-native species (either rafting species themselves or associated hitchhikers) to colonize Antarctica as the climate warms (Avila et al. 2020, Fraser et al. 2020), but whether these species will be able to survive and reproduce in the Antarctic is not yet known. Sea ice is a defining characteristic of Antarctic coastlines, and modelled trajectories of kelp rafts (Fraser et al. 2018) cross-referenced against sea-ice observations (Parkinson 2019) suggest that collisions between rafts and seasonal sea ice occur frequently (Fig. 1a); thus, rafts are expected to be entrained in, on or under sea ice and experience multiple freeze-and-thaw cycles on their journeys to Antarctica. In addition, kelp rafts that reach the Antarctic intertidal will experience temperatures well below 0°C if exposed to the air at low tide. Freezing can cause severe disruptive stress to seaweeds, and ice crystals growing in intercellular spaces can damage cell membranes and cause cell lysis (Eggert 2012). Such damage could affect the buoyancy of kelp tissue and decrease rafting ability. Although some non-native kelp rafts recovered from Antarctic shores appeared to still be reproductively viable, with mature gametes observed in reproductive tissue (Fraser et al. 2018), tissue damage caused by freezing could have widespread effects on the health, function and establishment success of a non-native species traversing the Southern Ocean.