Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T08:18:10.924Z Has data issue: false hasContentIssue false

STRICHARTZ ESTIMATES FOR THE WAVE EQUATION INSIDE CYLINDRICAL CONVEX DOMAINS

Published online by Cambridge University Press:  08 August 2022

LEN MEAS*
Affiliation:
Department of Mathematics, Royal University of Phnom Penh, Phnom Penh, Cambodia
*
Rights & Permissions [Opens in a new window]

Abstract

We establish local-in-time Strichartz estimates for solutions of the model case Dirichlet wave equation inside cylindrical convex domains $\Omega \subset \mathbb {R}^ 3$ with smooth boundary $\partial \Omega \neq \emptyset $ . The key ingredients to prove Strichartz estimates are dispersive estimates, energy estimates, interpolation and $TT^*$ arguments. Strichartz estimates for waves inside an arbitrary domain $\Omega $ have been proved by Blair, Smith and Sogge [‘Strichartz estimates for the wave equation on manifolds with boundary’, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), 1817–1829]. We provide a detailed proof of the usual Strichartz estimates from dispersive estimates inside cylindrical convex domains for a certain range of the wave admissibility.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

1 Introduction

1.1 The cylindrical model problem

Let $\Omega =\{x\geq 0,(y,z)\in \mathbb {R}^2\}\subset \mathbb {R}^3$ with smooth boundary $\partial \Omega =\{x=0\}$ and let $\Delta =\partial _x^2+(1+x)\partial _y^2+\partial _z^2$ . We consider solutions of the linear Dirichlet wave equation inside $\Omega $ :

(1.1) $$ \begin{align} (\partial_t^2-\Delta)u=0, \quad u_{|_{t=0}}=u_0,\quad\partial_tu_{|_{t=0}}=u_1,\quad u_{|_{x=0}}=0. \end{align} $$

The Riemannian manifold $(\Omega ,\Delta )$ with $\Delta =\partial _x^2+(1+x)\partial _y^2+\partial _z^2$ can be locally seen as a cylindrical domain in $\mathbb {R}^3$ by taking cylindrical coordinates $(r,\theta ,z)$ , where we set $r=1-x/2,\theta =y$ and $z=z$ . The main goal of this work is to prove the Strichartz estimates inside cylindrical convex domains for the solution u to (1.1).

1.2 Some known results

Let us recall a few results about Strichartz estimates (see [Reference Ivanovici, Lebeau and Planchon10, Section 1]). Let $(\Omega ,g)$ be a Riemannian manifold without boundary of dimension $d\geq 2$ . Local-in-time Strichartz estimates state that

(1.2) $$ \begin{align} \|u\|_{L^q((-T,T);L^r(\Omega))}\leq C_T(\|u_0\|_{\dot{H}^\beta(\Omega)}+\|u_1\|_{\dot{H}^{\beta-1}(\Omega)}), \end{align} $$

where $\dot {H}^\beta $ denotes the homogeneous Sobolev space over $\Omega $ of order $\beta $ , $2\leq q,r\leq \infty $ and

$$ \begin{align*} \frac{1}{q}+\frac{d}{r}=\frac{d}{2}-\beta,\quad \frac{1}{q}\leq \frac{d-1}{2}\bigg(\frac{1}{2}-\frac{1}{r}\bigg). \end{align*} $$

Here $u=u(t,x)$ is a solution to the wave equation

$$ \begin{align*} (\partial_t^2-\Delta_g)u=0\,\,\text{in } (-T,T)\times \Omega, \quad u(0,x)=u_0(x),\quad \partial_tu(0,x)=u_1(x), \end{align*} $$

where $\Delta _g$ denotes the Laplace–Beltrami operator on $(\Omega ,g)$ . The estimates (1.2) hold on $\Omega =\mathbb {R}^d$ and $g_{ij}=\delta _{ij}.$

Blair et al. [Reference Blair, Smith and Sogge4] proved the Strichartz estimates for the wave equation on a (compact or noncompact) Riemannian manifold with boundary. They proved that the Strichartz estimates (1.2) hold if $\Omega $ is a compact manifold with boundary and $ (q,r,\beta )$ is a triple satisfying

$$ \begin{align*} \frac{1}{q}+\frac{d}{r}=\frac{d}{2}-\beta \quad \text{for } \begin{cases} \dfrac{3}{q}+\dfrac{d-1}{r}\leq\dfrac{d-1}{2},\quad d\leq 4,\\[0.3 cm] \dfrac{1}{q}+\dfrac{1}{r}\leq \dfrac{1}{2},\quad d\geq 4. \end{cases} \end{align*} $$

Recently in [Reference Ivanovici, Lebeau and Planchon10], Ivanovici et al. deduced local-in-time Strichartz estimates (1.2) from the optimal dispersive estimates inside strictly convex domains of dimension $d\geq 2$ for a triple $(d,q,\beta )$ satisfying

$$ \begin{align*} \frac{1}{q}\leq\bigg(\frac{d-1}{2}-\frac{1}{4}\bigg)\bigg(\frac{1}{2}-\frac{1}{r}\bigg) \quad \text{and}\quad \beta=d\bigg(\frac{1}{2}-\frac{1}{r}\bigg)-\frac{1}{q}. \end{align*} $$

For $d\geq 3$ , this improves the range of indices for which sharp Strichartz estimates hold compared to the result by Blair et al. [Reference Blair, Smith and Sogge4]. However, the results in [Reference Blair, Smith and Sogge4] apply to any domains or manifolds with boundary. The latest results in [Reference Ivanovici, Lebeau and Planchon11] on Strichartz estimates inside the Friedlander model domain have been obtained for pairs $(q, r)$ such that

$$ \begin{align*}\frac{1}{q}\leq \bigg(\frac{1}{2}-\frac{1}{9}\bigg)\bigg(\frac{1}{2}-\frac{1}{r}\bigg).\end{align*} $$

This result improves on the known results for strictly convex domains for $d=2$ , while [Reference Ivanovici, Lebeau and Planchon10] only gives a loss of $\tfrac 14$ .

Let us also recall that dispersive estimates for the wave equation in $\mathbb {R}^ d$ follow from the representation of the solution as a sum of Fourier integral operators (see [Reference Bahouri, Chemin and Danchin1, Reference Brener5, Reference Ginibre and Velo8]). They read as follows:

(1.3) $$ \begin{align} \|\,\chi(hD_t)e^{\pm it\sqrt{-\Delta_{\mathbb{R}^d}}}\|_{L^1(\mathbb{R}^ d)\rightarrow L^\infty(\mathbb{R}^ d)}\leq Ch^{-d}\min\bigg\{1,\bigg(\frac{h}{|t|}\bigg)^{{(d-1)}/{2}}\bigg\}, \end{align} $$

where $\Delta _{\mathbb {R}^d}$ is the Laplace operator in $\mathbb {R}^d$ . Here and in the following, the function $\chi $ belongs to $C_0^\infty (]0,\infty [)$ and is equal to $1$ on $[1,2]$ and $D_t={(1}/{i})\partial _t$ . Inside strictly convex domains $\Omega _D$ of dimensions $d\geq 2$ , the optimal (local-in-time) dispersive estimates for the wave equation have been established by Ivanovici et al. [Reference Ivanovici, Lebeau and Planchon10]. More precisely, they have proved that

(1.4) $$ \begin{align} \|\,\chi(hD_t)e^{\pm it\sqrt{-\Delta_D}}\|_{L^1(\Omega_D)\rightarrow L^\infty(\Omega_D)}\leq Ch^{-d}\min\bigg\{1,\bigg(\frac{h}{|t|}\bigg)^{{(d-1)}/{2}-{1}/{4}}\bigg\}, \end{align} $$

where $\Delta _D$ is the Laplace operator on $\Omega _D$ . Due to the formation of caustics in arbitrarily small times, (1.4) induces a loss of $\tfrac 14$ powers of the $(h/|t|)$ factor compared to (1.3). The local-in-time dispersive estimates for the wave equation inside cylindrical convex domains in dimension $3$ have been derived in [Reference Meas13, Reference Meas14] as follows:

$$ \begin{align*} \|\,\chi(hD_t)\mathcal{G}_a(t,x,y,z)\|_{L^1(\Omega)\rightarrow L^\infty(\Omega)}\leq Ch^{-3}\min\bigg\{1,\bigg(\frac{h}{|t|}\bigg)^{{3}/{4}}\bigg\}, \end{align*} $$

where $\mathcal {G}_a$ is the Green function for (1.1).

2 Main result

We now state our main result concerning the Strichartz estimates inside cylindrical convex domains in dimension $3$ .

Theorem 2.1. Let $(\Omega ,\Delta )$ be defined as before. Let u be a solution of the wave equation on $\Omega $ :

$$ \begin{align*} (\partial_t^2-\Delta)u = 0\ \text{in } \Omega, \quad u_{|t=0}=u_0,\quad \partial_t u_{|t=0} =u_1,\quad u_{|x=0}=0. \end{align*} $$

Then for all T, there exists $C_T$ such that

$$ \begin{align*} \|u\|_{L^q((0,T);L^r(\Omega))}\leq C_T(\|u_0\|_{\dot{H}^{\beta}(\Omega)}+\|u_1\|_{\dot{H}^{\beta-1}(\Omega)}), \end{align*} $$

with

$$ \begin{align*} \frac{1}{q}\leq \frac{3}{4}\bigg(\frac{1}{2}-\frac{1}{r}\bigg) \quad \text{and}\quad \beta=3\bigg(\frac{1}{2}-\frac{1}{r}\bigg)-\frac{1}{q}. \end{align*} $$

To prove Theorem 2.1, we first prove the frequency-localised Strichartz estimates by utilising the frequency-localised dispersive estimates, interpolation and $TT^\ast $ arguments. We then apply the Littlewood–Paley square function estimates (see [Reference Blair, Ford, Herr and Marzuola2, Reference Blair, Ford and Marzuola3, Reference Ivanovici and Planchon12]) to get the Strichartz estimates (Theorem 2.1) in the context of cylindrical domains. For $d=3$ , Theorem 2.1 improves the range of indices for which the sharp Strichartz estimates hold. However, our result is restricted to cylindrical domains, while [Reference Blair, Smith and Sogge4] applies to any domain.

3 Strichartz estimates for the model problem

Let us recall some notation. For any $I\subset \mathbb {R},\Omega \subset \mathbb {R}^d$ , we define the mixed space-time norms

$$ \begin{align*} \|u\|_{L^q(I;L^r(\Omega))}&:=\bigg(\int_I\|u(t,.)\|_{L^r(\Omega)}^q\,dt\bigg)^{1/q}\quad\text{if } 1\leq q<\infty,\\ \|u\|_{L^{\infty}(I;L^r(\Omega))}&:=\mathop{\mathrm{ess\, sup}}_{t\in I}\|u(t,.)\|_{L^r(\Omega)}. \end{align*} $$

3.1 Frequency-localised Strichartz estimates

In this section, we prove Theorem 3.1. The classical strategy is as follows. We begin by interpolating between the energy estimates and dispersive estimates. This yields a new estimate, which we further manipulate via a classical $L^p$ inequality to establish (3.8). This last step imposes conditions on the space-time exponent pair $(q,r)$ ; these are precisely the wave admissibility criteria. The classical inequalities used are the Young, Hölder and Hardy–Littlewood–Sobolev inequalities.

We first recall the Littlewood–Paley decomposition and some links with Sobolev spaces [Reference Bahouri, Chemin and Danchin1]. Let $\chi \in C_0^\infty (\mathbb {R}^*)$ and equal to $1$ on $[\tfrac 12,2]$ such that

$$ \begin{align*} \sum_{j\in\mathbb{Z}}\chi(2^{-j}\lambda)=1,\quad \lambda>0. \end{align*} $$

We define the associated Littlewood–Paley frequency cutoffs $\chi (2^{-j}\sqrt {-\Delta })$ using the spectral theorem for $\Delta $ and we have

$$ \begin{align*} \sum_{j\in\mathbb{Z}}\chi(2^{-j}\sqrt{-\Delta})=\mbox{Id}: L^2(\Omega)\longrightarrow L^2(\Omega). \end{align*} $$

This decomposition takes a single function and writes it as a superposition of a countably infinite family of functions $\chi $ each one having a frequency of magnitude $\sim 2^{j}$ for $j\geq 1$ . A norm of the homogeneous Sobolev space $\dot {H}^{\beta }$ is defined as follows: for all $\beta \geq 0$ ,

$$ \begin{align*} \|u\|_{\dot{H}^\beta}:=\bigg(\sum_{j\in\mathbb{Z}}2^{2j\beta}\|\chi(2^{-j}D_t)u\|_{L^2}^2\bigg)^{1/2}. \end{align*} $$

With this decomposition, the Littlewood–Paley square function estimate (see [Reference Blair, Ford, Herr and Marzuola2, Reference Blair, Ford and Marzuola3, Reference Ivanovici and Planchon12]) reads as follows: for $f\in L^r(\Omega )$ and for all $r\in [2,\infty [$ ,

(3.1) $$ \begin{align} \|f\|_{L^r(\Omega)}\leq C_r\bigg\|\bigg(\sum_{j\in\mathbb{Z}}|\chi(2^{-j}\sqrt{-\Delta})f|^2\bigg)^{1/2}\bigg\|_{L^r(\Omega)}. \end{align} $$

The proof follows from the classical Stein argument involving Rademacher functions and an appropriate Mikhlin–Hörmander multiplier theorem.

We define the frequency localisation $v_j$ of u by $v_j=\chi (2^{-j}\sqrt {-\Delta })u$ . Hence, $u=\sum _{j\geq 0}v_j$ . Let $h=2^{-j}$ . We deduce from the dispersive estimates inside cylindrical convex domains established in [Reference Meas13, Reference Meas14] the frequency-localised dispersive estimates for the solution $v_j=\chi (hD_t)u$ of the (frequency-localised) wave equation

(3.2) $$ \begin{align} (\partial_t^2-\Delta)v_j=0 \text{ in } \Omega,\quad {v_j}_{|t=0}=\chi(hD_t)u_0,\quad \partial_t{v_j}_{|t=0}=\chi(hD_t)u_1,\quad {v_j}_{|\partial\Omega}=0, \end{align} $$

which read as follows:

(3.3) $$ \begin{align} \|\dot{\mathcal U}(t)\chi(hD_t)u_0\|_{L^\infty}\lesssim h^{-3}\min\bigg\{1,\bigg(\frac{h}{t}\bigg)^{{3}/{4}}\bigg\}\|\chi(hD_t)\,u_0\|_{L^1},\\ \|\mathcal U(t)\chi(hD_t)u_1\|_{L^\infty}\lesssim h^{-2}\min\bigg\{1,\bigg(\frac{h}{t}\bigg)^{{3}/{4}}\bigg\}\|\chi(hD_t)\,u_1\|_{L^1},\nonumber \end{align} $$

where we use the notation

$$ \begin{align*} \mathcal U(t):=\frac{\sin(t\sqrt{-\Delta})}{\sqrt{-\Delta}}& \quad\text{and}\quad \dot{\mathcal U}(t):=\cos(t\sqrt{-\Delta}). \end{align*} $$

These estimates yield the following Strichartz estimates.

Theorem 3.1 (Frequency-localised Strichartz estimates).

Let $(\Omega ,\Delta )$ be defined as before. Let $v_j$ be a solution of the (frequency-localised) wave equation (3.2). Then for all T, there exists $C_T$ such that

(3.4) $$ \begin{align} h^\beta\|\dot{\mathcal U}(t)\chi(hD_t)u_0\|_{L_{t}^q(L_x^r)}\lesssim \|\chi(hD_t)u_0\|_{L^2}, \end{align} $$
(3.5) $$ \begin{align} h^{\beta-1}\|\mathcal U(t)\chi(hD_t)u_1\|_{L_{t}^q(L_x^r)}\lesssim \|\chi(hD_t)u_1\|_{L^2}, \end{align} $$

with

$$ \begin{align*}q\in ]2,\infty],\quad r\in[2,\infty],\quad \frac{1}{q}\leq\alpha_3\bigg(\frac{1}{2}-\frac{1}{r}\bigg),\quad \alpha_3=\frac{3}{4},\quad \beta=3\bigg(\frac{1}{2}-\frac{1}{r}\bigg)-\frac{1}{q}.\end{align*} $$

Remark 3.2. If ${1}/{q}=\alpha _3({1}/{2}-{1}/{r})$ , then $\beta =(3-\alpha _3)({1}/{2}-{1}/{r})$ .

Proof of Theorem 3.1.

We prove only (3.4) since (3.5) follows analogously. We have the frequency-localised dispersive estimates in $\Omega $ in (3.3) for $|t|\geq h$ ,

(3.6) $$ \begin{align} \|\dot{\mathcal U}(t)\chi(hD_t)u_0\|_ {L^\infty}\lesssim h^{-3}\bigg(\frac{h}{t}\bigg)^{\alpha_3}\|\chi(hD_t)u_0\|_{L^1}, \end{align} $$

and the energy estimates,

(3.7) $$ \begin{align} \|\dot{\mathcal U}(t)\chi(hD_t)u_0\|_ {L^2}\lesssim\|\chi(hD_t)u_0\|_{L^2}. \end{align} $$

We apply the Riesz–Thorin interpolation theorem [Reference Hörmander9] to the operator $\dot {\mathcal {U}}(t)\chi (hD_t)$ for fixed time $t\in \mathbb {R}$ . Interpolating between (3.6) and (3.7) with $\theta =1-{2}/{r}$ yields

(3.8) $$ \begin{align} \|\dot{\mathcal U}(t)\chi(hD_t)u_0\|_ {L^r}\lesssim h^{(-3+\alpha_3)(1-{2}/{r})}t^{-\alpha_3(1-{2}/{r})}\|\chi(hD_t)u_0\|_{L^{r'}}, \end{align} $$

for $2\leq r\leq \infty $ , where $r'$ denotes the exponent conjugate to r (that is, ${1}/{r}+{1}/{r'}=1$ ). Let T be the operator solution defined by

$$ \begin{align*} T: \phi_0\in L^2 \longmapsto T\phi_0=\dot{\mathcal U}(t)\chi(hD_t)\phi_0\in L_t^qL_x^r. \end{align*} $$

Its adjoint is given by

$$ \begin{align*} T^*: \psi\in L_t^{q'}L_x^{r'}\longmapsto T^*\psi=\int \dot{\mathcal U}(t)\chi^*(hD_t)\psi(t) \,dt\in L^ 2. \end{align*} $$

Moreover,

$$ \begin{align*} T^*T: \psi\in L_t^{q'}L_x^{r'}\longmapsto T^*T\psi=\int \dot{\mathcal U}(t-s)\chi^*(hD_t)\chi(hD_t)\psi(s) \,ds\in L_t^qL_x^r. \end{align*} $$

By the $TT^*$ argument in [Reference Ginibre and Velo7], it is sufficient to prove

$$ \begin{align*} \| T^*T\psi\|_{L_t^qL_x^r}&\lesssim h^{-2\beta}\| \psi\|_{L_t^{q'}L_x^{r'}}. \end{align*} $$

We have

(3.9) $$ \begin{align} \| T^*T\psi\|_{L_t^qL_x^r}&=\bigg\|\int \dot{\mathcal U}(t-s)\chi^*(hD_t)\chi(hD_t)\psi(s) \,ds\bigg\|_{L_t^qL_x^r},\nonumber\\ &\lesssim h^{-2(3-\alpha_3)({1}/{2}-{1}/{r})}\bigg\|\int|t-s|^{-2\alpha_3({1}/{2}-{1}/{r})}\|\psi\|_ {L_x^{r'}}\,ds\bigg\|_{L_t^q}. \end{align} $$

When ${1}/{q}< \alpha _3({1}/{2}-{1}/{r})$ , we use Young’s inequality which states that

(3.10) $$ \begin{align} \|K\ast u\|_{L^q}\leq \|K\|_{L^{\tilde r}}\|u\|_ {L^p} \quad\mbox{for } 1\leq p,q\leq\infty, \end{align} $$

where $1+{1}/{q}={1}/{\tilde r}+{1}/{p}$ . We apply (3.10) with $\tilde r=q/2, p=q'$ and ${1}/{q}+{1}/{q'}=1$ to get the estimate

$$ \begin{align*} \bigg\|\int_ h^\infty|t-s|^{-2\alpha_3({1}/{2}-{1}/{r})}\|\psi\|_ {L_x^{r'}}\,ds\bigg\|_{L_t^q} & \leq \|\psi\|_{L_t^{q'}L_x^{r'}}\|t^{-2\alpha_3({1}/{2}-{1}/{r})}\|_{L_{|t|\geq h}^{q/2}} \\ & \leq h^{-2\alpha_3({1}{/2}-{1}/{r})+{2}/{q}}\| \psi\|_{L_t^{q'}L_x^{r'}}. \end{align*} $$

Since ${1}{/q}< \alpha _3({1}/{2}-{1}/{r})$ ,

$$ \begin{align*} \|t^{-2\alpha_3({1}/{2}-{2}/{r})}\|_{L_{|t|\geq h}^{q/2}}=\bigg(\int_h^\infty t^{-2\alpha_3({1}/{2}-{2}/{r})q/2} \,dt\bigg)^{2/q}\simeq h^{-2\alpha_3({1}/{2}-{1}/{r})+{2}/{q}}. \end{align*} $$

Then (3.9) becomes

$$ \begin{align*} \| T^*T\psi\|_{L_t^qL_x^r} &\lesssim h^{-2(3-\alpha_3)({1}/{2}-{1}/{r})}\bigg\|\int|t-s|^{-2\alpha_3({1}/{2}-{1}/{r})}\|\psi\|_ {L_x^{r'}}\,ds\bigg\|_{L_t^q},\\ &\lesssim h^{-2[3({1}/{2}-{1}/{r})-\frac{1}{q}]}\| \psi\|_{L_t^{q'}L_x^{r'}} \lesssim h^{-2\beta}\| \psi\|_{L_t^{q'}L_x^{r'}}. \end{align*} $$

When ${1}/{q}= \alpha _3({1}/{2}-{1}/{r})$ , we instead use the Hardy–Littlewood–Sobolev inequality (see [Reference Hörmander9, Theorem 4.5.3]) which says that for $K(t)=|t|^{-1/\gamma }$ and $1<\gamma <\infty $ ,

(3.11) $$ \begin{align} \|K\ast u\|_{L^{\tilde r}(\mathbb{R})}\lesssim \|u\|_ {L^{p'}(\mathbb{R})} \quad\mbox{for } \frac{1}{\gamma}=\frac{1}{p}+\frac{1}{\tilde r}. \end{align} $$

We apply (3.11) with $\tilde r=q, p=q$ and ${1}/{\gamma }={2}/{q}=2\alpha _3({1}/{2}-{1}/{r})$ to show that $t^{-2/q} *: L^{q'}\rightarrow L^{q}$ is bounded for $q>2$ . Hence, from (3.9),

$$ \begin{align*} \| T^*T\psi\|_{L_t^qL_x^r}&\lesssim h^{-2(3-\alpha_3)({1}{/2}-{1}/{r})}\| \psi\|_{L_t^{q'}L_x^{r'}} \lesssim h^{-2\beta}\| \psi\|_{L_t^{q'}L_x^{r'}}.\\[-2.5pc] \end{align*} $$

3.2 Homogeneous Strichartz estimates

We can restate Theorem 2.1 as follows.

Theorem 3.3 (Theorem 2.1).

Let $(\Omega ,\Delta )$ be defined as before. Let u be a solution of the wave equation on $\Omega $ :

(3.12) $$ \begin{align} &(\partial_t^2-\Delta)u=0\ \text{in } \Omega,\quad u_{|t=0}=u_0,\quad \partial_t u_{|t=0}=u_1,\quad u_{|x=0}=0. \end{align} $$

Then for all T, there exists $C_T$ such that

$$ \begin{align*} \|u\|_{L^q((0,T);L^r(\Omega))}\leq C_T(\|u_0\|_{\dot{H}^{\beta}(\Omega)}+\|u_1\|_{\dot{H}^{\beta-1}(\Omega)}), \end{align*} $$

with

$$ \begin{align*} \frac{1}{q}\leq\frac{3}{4}\bigg(\frac{1}{2}-\frac{1}{r}\bigg) \quad\text{and}\quad \beta=3 \bigg(\frac{1}{2}-\frac{1}{r}\bigg)-\frac{1}{q}. \end{align*} $$

Proof. Using the square function estimates (3.1),

$$ \begin{align*} \|u\|_{L_t^qL_x^r}\lesssim \bigg(\sum_{j}\|v_j\|_{L_t^qL_x^r}^2\bigg)^{1/2}. \end{align*} $$

Indeed,

$$ \begin{align*} \|u\|_{L^r(\Omega)} & \lesssim\bigg\|\bigg(\sum_{j\geq 0}|v_j|^2\bigg)^{1/2}\bigg\|_{L^r(\Omega)}= \bigg\|\sum_{j\geq 0}|v_j|^2\bigg\|_{L^{r/2}(\Omega)}^{1/2} \\ & \lesssim\bigg\{\sum_{j\geq 0}\|v_j^2\|_{L^{r/2}(\Omega)}\bigg\}^{1/2}=\bigg\{\sum_{j\geq 0}\|v_j\|_{L^{r}(\Omega)}^2\bigg\}^{1/2}. \end{align*} $$

Hence,

$$ \begin{align*} \|u\|_{L_t^qL_x^r}&\lesssim \bigg\|\bigg\{\sum_{j\geq 0}\|v_j\|_{L_x^{r}}^2\bigg\}^{1/2}\bigg\|_{L_t^q}=\bigg\{\bigg\|\sum_{j\geq 0}\|v_j\|_{L_x^{r}}^2\bigg\|_{L_t^{q/2}}\bigg\}^{1/2},\\ &\lesssim \bigg\{\sum_{j\geq 0}\|\|v_j\|_{L_x^r}^2\|_{L_t^{q/2}}\bigg\}^{1/2}=\bigg\{\sum_{j\geq 0}\|v_j\|_{L_t^qL_x^r}^2\bigg\}^{1/2}. \end{align*} $$

The solution u to the wave equation (3.12) with localised initial data in frequency $1/h=2^j$ is given by

$$ \begin{align*} u=\sum_j v_j \quad\text{where}\ v_j=\dot{\mathcal U}(t)\chi(2^{-j}D_t)u_0+ \mathcal U(t)\chi(2^{-j}D_t)u_1. \end{align*} $$

Therefore,

$$ \begin{align*} \begin{aligned} \|u\|_{L_t^qL_x^r}&\lesssim \bigg( \sum_{j}\|\dot{\mathcal U}(t)\chi(2^{-j}D_t)u_0\|_{L_t^qL_x^r}^2+\|\mathcal U(t)\chi(2^{-j}D_t)u_1\|_{L_t^qL_x^r}^2\bigg)^{1/2},\\ &\lesssim \bigg( \sum_j2^{2j\beta}\|\chi(2^{-j}D_t)u_0\|_ {L^2}^2+2^{2j(\beta-1)}\|\chi(2^{-j}D_t)u_1\|_ {L^2}^2\bigg)^{1/2},\\ &\lesssim \bigg(\sum_j2^{2j\beta}\|\chi(2^{-j}D_t)u_0\|_{L^2}^2\bigg)^{1/2}+\bigg(\sum_j2^{2j(\beta-1)}\|\chi(2^{-j}D_t)u_1\|_{L^2}^2\bigg)^{1/2},\\ &\lesssim \|u_0\|_{\dot{H}^\beta(\Omega)}+\|u_1\|_{\dot{H}^{\beta-1}(\Omega)}, \end{aligned} \end{align*} $$

where we used Minkowski’s inequality in the third line.

4 Application

We can use the Strichartz estimates (Theorem 2.1) to obtain the well posedness of the following energy critical nonlinear wave equation in $(\Omega , \Delta )$ :

(4.1) $$ \begin{align} \begin{aligned} &\quad (\partial_t^2-\Delta)u+u^5=0\quad \text{in } \mathbb{R}_t\times\Omega,\\ &u_{|t=0}=u_0,\quad \partial_t u_{|t=0}=u_1,\quad u_{|x=0}=0. \end{aligned} \end{align} $$

The solutions to (4.1) satisfy an energy conservation law:

$$ \begin{align*}E(u(t),\partial_t u(t))=\int_\Omega\bigg(\frac{1}{2}|\nabla u(t,x)|^2+\frac{1}{2}|\partial_t u(t,x)|^2+\frac{1}{6}|u(t,x)|^6\bigg)\,dx=E(u_0, u_1).\end{align*} $$

For initial data $(u_0, u_1)\in H_0^1(\Omega )\times L^2(\Omega )$ , Theorem 2.1 allows the Strichartz triplet $q=5, r=10,\,\beta =1$ and we get

$$ \begin{align*}\|u\|_{L^5((0,T); L^{10}(\Omega))}\leq C_T (\|u_0\|_{H^1(\Omega)}+\|u_1\|_{L^2(\Omega)}).\end{align*} $$

As a consequence, the critical nonlinear wave equation (4.1) is locally well posed in

$$ \begin{align*}X_T=C^0([0,T]; H_0^1(\Omega))\cap L^5((0,T); L^{10}(\Omega))\times C^0([0,T]; L^2(\Omega)).\end{align*} $$

Moreover, with the arguments in [Reference Burq, Lebeau and Planchon6], we can extend local to global existence for arbitrary (finite energy) data.

References

Bahouri, H., Chemin, J. Y. and Danchin, R., Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, 343 (Springer, Berlin–Heidelberg, 2011).CrossRefGoogle Scholar
Blair, M. D., Ford, G. A., Herr, S. and Marzuola, J. L., ‘Strichartz estimates for the Schrödinger equation on polygonal domains’, J. Geom. Anal. 22(2) (2012), 339351.10.1007/s12220-010-9187-3CrossRefGoogle Scholar
Blair, M. D., Ford, G. A. and Marzuola, J. L., ‘Strichartz estimates for the wave equation on flat cones’, Int. Math. Res. Not. IMRN 3 (2013), 562591.CrossRefGoogle Scholar
Blair, M. D., Smith, H. F. and Sogge, C. D., ‘Strichartz estimates for the wave equation on manifolds with boundary’, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), 18171829.10.1016/j.anihpc.2008.12.004CrossRefGoogle Scholar
Brener, P., ‘On ${L}_p-{L}_{p^{\prime }}$ estimates for the wave equation’, Math. Z. 145 (1975), 251254.Google Scholar
Burq, N., Lebeau, G. and Planchon, F., ‘Global existence for energy critical waves in 3-D domains’, J. Amer. Math. Soc. 21(3) (2008), 831845.CrossRefGoogle Scholar
Ginibre, J. and Velo, G., ‘Smoothing properties and retarded estimates for some dispersive evolution equations’, Comm. Math. Phys. 144(1) (1992), 163188.10.1007/BF02099195CrossRefGoogle Scholar
Ginibre, J. and Velo, G., ‘Generalized Strichartz inequalities for the wave equation’, J. Funct. Anal. 133 (1995), 749774.CrossRefGoogle Scholar
Hörmander, L., The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis, Classics in Mathematics (Springer-Verlag, New York, 2003).CrossRefGoogle Scholar
Ivanovici, O., Lebeau, G. and Planchon, F., ‘Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case’, Ann. of Math. (2) 180 (2014), 323380.CrossRefGoogle Scholar
Ivanovici, O., Lebeau, G. and Planchon, F., ‘Strichartz estimates for the wave equation on a 2D model convex domain’, J. Differential Equations 300 (2021), 830880.CrossRefGoogle Scholar
Ivanovici, O. and Planchon, F., ‘Square function and heat flow estimates on domains’, Comm. Partial Differential Equations 42 (2017), 14471466.CrossRefGoogle Scholar
Meas, L., ‘Dispersive estimates for the wave equation inside cylindrical convex domains: a model case’, C. R. Math. Acad. Sci. Paris 355(2) (2017), 161165.CrossRefGoogle Scholar
Meas, L., ‘Precise dispersive estimates for the wave equation inside cylindrical convex domains’, Proc. Amer. Math. Soc. 150(8) (2022), 34313443.Google Scholar