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Abstract

We establish local-in-time Strichartz estimates for solutions of the model case Dirichlet wave equation
inside cylindrical convex domains Ω ⊂ R3 with smooth boundary ∂Ω � ∅. The key ingredients to prove
Strichartz estimates are dispersive estimates, energy estimates, interpolation and TT∗ arguments. Strichartz
estimates for waves inside an arbitrary domain Ω have been proved by Blair, Smith and Sogge [‘Strichartz
estimates for the wave equation on manifolds with boundary’, Ann. Inst. H. Poincaré Anal. Non Linéaire 26
(2009), 1817–1829]. We provide a detailed proof of the usual Strichartz estimates from dispersive estimates
inside cylindrical convex domains for a certain range of the wave admissibility.
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1. Introduction

1.1. The cylindrical model problem. Let Ω = {x ≥ 0, (y, z) ∈ R2} ⊂ R3 with
smooth boundary ∂Ω = {x = 0} and let Δ = ∂2

x + (1 + x)∂2
y + ∂

2
z . We consider solutions

of the linear Dirichlet wave equation inside Ω:

(∂2
t − Δ)u = 0, u|t=0 = u0, ∂tu|t=0 = u1, u|x=0 = 0. (1.1)

The Riemannian manifold (Ω,Δ) with Δ = ∂2
x + (1 + x)∂2

y + ∂
2
z can be locally seen as

a cylindrical domain in R3 by taking cylindrical coordinates (r, θ, z), where we set
r = 1 − x/2, θ = y and z = z. The main goal of this work is to prove the Strichartz
estimates inside cylindrical convex domains for the solution u to (1.1).

1.2. Some known results. Let us recall a few results about Strichartz estimates (see
[10, Section 1]). Let (Ω, g) be a Riemannian manifold without boundary of dimension
d ≥ 2. Local-in-time Strichartz estimates state that

‖u‖Lq((−T ,T);Lr(Ω)) ≤ CT (‖u0‖Ḣβ(Ω) + ‖u1‖Ḣβ−1(Ω)), (1.2)
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where Ḣβ denotes the homogeneous Sobolev space over Ω of order β, 2 ≤ q, r ≤ ∞
and

1
q
+

d
r
=

d
2
− β,

1
q
≤ d − 1

2

(1
2
− 1

r

)
.

Here u = u(t, x) is a solution to the wave equation

(∂2
t − Δg)u = 0 in (−T , T) ×Ω, u(0, x) = u0(x), ∂tu(0, x) = u1(x),

where Δg denotes the Laplace–Beltrami operator on (Ω, g). The estimates (1.2) hold
on Ω = Rd and gij = δij.

Blair et al. [4] proved the Strichartz estimates for the wave equation on a (compact
or noncompact) Riemannian manifold with boundary. They proved that the Strichartz
estimates (1.2) hold if Ω is a compact manifold with boundary and (q, r, β) is a triple
satisfying

1
q
+

d
r
=

d
2
− β for

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

3
q
+

d − 1
r
≤ d − 1

2
, d ≤ 4,

1
q
+

1
r
≤ 1

2
, d ≥ 4.

Recently in [10], Ivanovici et al. deduced local-in-time Strichartz estimates (1.2) from
the optimal dispersive estimates inside strictly convex domains of dimension d ≥ 2 for
a triple (d, q, β) satisfying

1
q
≤
(d − 1

2
− 1

4

)(1
2
− 1

r

)
and β = d

(1
2
− 1

r

)
− 1

q
.

For d ≥ 3, this improves the range of indices for which sharp Strichartz estimates hold
compared to the result by Blair et al. [4]. However, the results in [4] apply to any
domains or manifolds with boundary. The latest results in [11] on Strichartz estimates
inside the Friedlander model domain have been obtained for pairs (q, r) such that

1
q
≤
(1
2
− 1

9

)(1
2
− 1

r

)
.

This result improves on the known results for strictly convex domains for d = 2, while
[10] only gives a loss of 1

4 .
Let us also recall that dispersive estimates for the wave equation in Rd follow from

the representation of the solution as a sum of Fourier integral operators (see [1, 5, 8]).
They read as follows:

‖ χ(hDt)e±it
√
−Δ
Rd ‖L1(Rd)→L∞(Rd) ≤ Ch−d min

{
1,
( h
|t|

)(d−1)/2}
, (1.3)

where ΔRd is the Laplace operator in Rd. Here and in the following, the function χ
belongs to C∞0 (]0,∞[) and is equal to 1 on [1, 2] and Dt = (1/i)∂t. Inside strictly convex
domains ΩD of dimensions d ≥ 2, the optimal (local-in-time) dispersive estimates for
the wave equation have been established by Ivanovici et al. [10]. More precisely, they
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have proved that

‖ χ(hDt)e±it
√
−ΔD‖L1(ΩD)→L∞(ΩD) ≤ Ch−d min

{
1,
( h
|t|

)(d−1)/2−1/4}
, (1.4)

where ΔD is the Laplace operator onΩD. Due to the formation of caustics in arbitrarily
small times, (1.4) induces a loss of 1

4 powers of the (h/|t|) factor compared to (1.3).
The local-in-time dispersive estimates for the wave equation inside cylindrical convex
domains in dimension 3 have been derived in [13, 14] as follows:

‖ χ(hDt)Ga(t, x, y, z)‖L1(Ω)→L∞(Ω) ≤ Ch−3 min
{
1,
( h
|t|

)3/4}
,

where Ga is the Green function for (1.1).

2. Main result

We now state our main result concerning the Strichartz estimates inside cylindrical
convex domains in dimension 3.

THEOREM 2.1. Let (Ω,Δ) be defined as before. Let u be a solution of the wave equation
on Ω:

(∂2
t − Δ)u = 0 in Ω, u|t=0 = u0, ∂tu|t=0 = u1, u|x=0 = 0.

Then for all T, there exists CT such that

‖u‖Lq((0,T);Lr(Ω)) ≤ CT (‖u0‖Ḣβ(Ω) + ‖u1‖Ḣβ−1(Ω)),

with
1
q
≤ 3

4

(1
2
− 1

r

)
and β = 3

(1
2
− 1

r

)
− 1

q
.

To prove Theorem 2.1, we first prove the frequency-localised Strichartz estimates
by utilising the frequency-localised dispersive estimates, interpolation and TT∗ argu-
ments. We then apply the Littlewood–Paley square function estimates (see [2, 3, 12])
to get the Strichartz estimates (Theorem 2.1) in the context of cylindrical domains.
For d = 3, Theorem 2.1 improves the range of indices for which the sharp Strichartz
estimates hold. However, our result is restricted to cylindrical domains, while [4]
applies to any domain.

3. Strichartz estimates for the model problem

Let us recall some notation. For any I ⊂ R,Ω ⊂ Rd, we define the mixed space-time
norms

‖u‖Lq(I;Lr(Ω)) :=
( ∫

I
‖u(t, .)‖qLr(Ω) dt

)1/q
if 1 ≤ q < ∞,

‖u‖L∞(I;Lr(Ω)) := ess sup
t∈I
‖u(t, .)‖Lr(Ω).
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3.1. Frequency-localised Strichartz estimates. In this section, we prove
Theorem 3.1. The classical strategy is as follows. We begin by interpolating between
the energy estimates and dispersive estimates. This yields a new estimate, which
we further manipulate via a classical Lp inequality to establish (3.8). This last step
imposes conditions on the space-time exponent pair (q, r); these are precisely the
wave admissibility criteria. The classical inequalities used are the Young, Hölder and
Hardy–Littlewood–Sobolev inequalities.

We first recall the Littlewood–Paley decomposition and some links with Sobolev
spaces [1]. Let χ ∈ C∞0 (R∗) and equal to 1 on [ 1

2 , 2] such that∑
j∈Z

χ(2−jλ) = 1, λ > 0.

We define the associated Littlewood–Paley frequency cutoffs χ(2−j
√
−Δ) using the

spectral theorem for Δ and we have∑
j∈Z

χ(2−j
√
−Δ) = Id : L2(Ω) −→ L2(Ω).

This decomposition takes a single function and writes it as a superposition of a
countably infinite family of functions χ each one having a frequency of magnitude
∼ 2j for j ≥ 1. A norm of the homogeneous Sobolev space Ḣβ is defined as follows: for
all β ≥ 0,

‖u‖Ḣβ :=
(∑

j∈Z
22jβ‖χ(2−jDt)u‖2L2

)1/2
.

With this decomposition, the Littlewood–Paley square function estimate (see [2, 3,
12]) reads as follows: for f ∈ Lr(Ω) and for all r ∈ [2,∞[,

‖ f ‖Lr(Ω) ≤ Cr

∥∥∥∥∥
(∑

j∈Z
|χ(2−j

√
−Δ) f |2

)1/2∥∥∥∥∥
Lr(Ω)

. (3.1)

The proof follows from the classical Stein argument involving Rademacher functions
and an appropriate Mikhlin–Hörmander multiplier theorem.

We define the frequency localisation vj of u by vj = χ(2−j
√
−Δ)u. Hence, u =∑

j≥0 vj. Let h = 2−j. We deduce from the dispersive estimates inside cylindrical convex
domains established in [13, 14] the frequency-localised dispersive estimates for the
solution vj = χ(hDt)u of the (frequency-localised) wave equation

(∂2
t − Δ)vj = 0 in Ω, vj |t=0 = χ(hDt)u0, ∂tvj |t=0 = χ(hDt)u1, vj |∂Ω = 0, (3.2)

which read as follows:

‖U̇(t)χ(hDt)u0‖L∞ � h−3 min
{
1,
(h

t

)3/4}
‖χ(hDt) u0‖L1 , (3.3)

‖U(t)χ(hDt)u1‖L∞ � h−2 min
{
1,
(h

t

)3/4}
‖χ(hDt) u1‖L1 ,

https://doi.org/10.1017/S0004972722000727 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972722000727


308 L. Meas [5]

where we use the notation

U(t) :=
sin(t
√
−Δ)

√
−Δ

and U̇(t) := cos(t
√
−Δ).

These estimates yield the following Strichartz estimates.

THEOREM 3.1 (Frequency-localised Strichartz estimates). Let (Ω,Δ) be defined as
before. Let vj be a solution of the (frequency-localised) wave equation (3.2). Then
for all T, there exists CT such that

hβ‖U̇(t)χ(hDt)u0‖Lq
t (Lr

x) � ‖χ(hDt)u0‖L2 , (3.4)

hβ−1‖U(t)χ(hDt)u1‖Lq
t (Lr

x) � ‖χ(hDt)u1‖L2 , (3.5)

with

q ∈]2,∞], r ∈ [2,∞],
1
q
≤ α3

(1
2
− 1

r

)
, α3 =

3
4

, β = 3
(1
2
− 1

r

)
− 1

q
.

REMARK 3.2. If 1/q = α3(1/2 − 1/r), then β = (3 − α3)(1/2 − 1/r).

PROOF OF THEOREM 3.1. We prove only (3.4) since (3.5) follows analogously. We
have the frequency-localised dispersive estimates in Ω in (3.3) for |t| ≥ h,

‖U̇(t)χ(hDt)u0‖L∞ � h−3
(h

t

)α3

‖χ(hDt)u0‖L1 , (3.6)

and the energy estimates,

‖U̇(t)χ(hDt)u0‖L2 � ‖χ(hDt)u0‖L2 . (3.7)

We apply the Riesz–Thorin interpolation theorem [9] to the operator U̇(t)χ(hDt) for
fixed time t ∈ R. Interpolating between (3.6) and (3.7) with θ = 1 − 2/r yields

‖U̇(t)χ(hDt)u0‖Lr � h(−3+α3)(1−2/r)t−α3(1−2/r)‖χ(hDt)u0‖Lr′ , (3.8)

for 2 ≤ r ≤ ∞, where r′ denotes the exponent conjugate to r (that is, 1/r + 1/r′ = 1).
Let T be the operator solution defined by

T : φ0 ∈ L2 �−→ Tφ0 = U̇(t)χ(hDt)φ0 ∈ Lq
t Lr

x.

Its adjoint is given by

T∗ : ψ ∈ Lq′
t Lr′

x �−→ T∗ψ =
∫
U̇(t)χ∗(hDt)ψ(t) dt ∈ L2.

Moreover,

T∗T : ψ ∈ Lq′
t Lr′

x �−→ T∗Tψ =
∫
U̇(t − s)χ∗(hDt)χ(hDt)ψ(s) ds ∈ Lq

t Lr
x.

By the TT∗ argument in [7], it is sufficient to prove

‖T∗Tψ‖Lq
t Lr

x
� h−2β‖ψ‖Lq′

t Lr′
x

.
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We have

‖T∗Tψ‖Lq
t Lr

x
=

∥∥∥∥∥
∫
U̇(t − s)χ∗(hDt)χ(hDt)ψ(s) ds

∥∥∥∥∥
Lq

t Lr
x

,

� h−2(3−α3)(1/2−1/r)
∥∥∥∥∥
∫
|t − s|−2α3(1/2−1/r)‖ψ‖Lr′

x
ds
∥∥∥∥∥

Lq
t

. (3.9)

When 1/q < α3(1/2 − 1/r), we use Young’s inequality which states that

‖K ∗ u‖Lq ≤ ‖K‖Lr̃‖u‖Lp for 1 ≤ p, q ≤ ∞, (3.10)

where 1 + 1/q = 1/r̃ + 1/p. We apply (3.10) with r̃ = q/2, p = q′ and 1/q + 1/q′ = 1
to get the estimate∥∥∥∥∥

∫ ∞
h
|t − s|−2α3(1/2−1/r)‖ψ‖Lr′

x
ds
∥∥∥∥∥

Lq
t

≤ ‖ψ‖Lq′
t Lr′

x
‖t−2α3(1/2−1/r)‖Lq/2

|t|≥h

≤ h−2α3(1/2−1/r)+2/q‖ψ‖Lq′
t Lr′

x
.

Since 1/q < α3(1/2 − 1/r),

‖t−2α3(1/2−2/r)‖Lq/2
|t|≥h
=

( ∫ ∞
h

t−2α3(1/2−2/r)q/2 dt
)2/q
� h−2α3(1/2−1/r)+2/q.

Then (3.9) becomes

‖T∗Tψ‖Lq
t Lr

x
� h−2(3−α3)(1/2−1/r)

∥∥∥∥∥
∫
|t − s|−2α3(1/2−1/r)‖ψ‖Lr′

x
ds
∥∥∥∥∥

Lq
t

,

� h−2[3(1/2−1/r)− 1
q ]‖ψ‖Lq′

t Lr′
x
� h−2β‖ψ‖Lq′

t Lr′
x

.

When 1/q = α3(1/2 − 1/r), we instead use the Hardy–Littlewood–Sobolev inequal-
ity (see [9, Theorem 4.5.3]) which says that for K(t) = |t|−1/γ and 1 < γ < ∞,

‖K ∗ u‖Lr̃(R) � ‖u‖Lp′ (R) for
1
γ
=

1
p
+

1
r̃

. (3.11)

We apply (3.11) with r̃ = q, p = q and 1/γ = 2/q = 2α3(1/2 − 1/r) to show that t−2/q∗ :
Lq′ → Lq is bounded for q > 2. Hence, from (3.9),

‖T∗Tψ‖Lq
t Lr

x
� h−2(3−α3)(1/2−1/r)‖ψ‖Lq′

t Lr′
x
� h−2β‖ψ‖Lq′

t Lr′
x

.
�

3.2. Homogeneous Strichartz estimates. We can restate Theorem 2.1 as follows.

THEOREM 3.3 (Theorem 2.1). Let (Ω,Δ) be defined as before. Let u be a solution of
the wave equation on Ω:

(∂2
t − Δ)u = 0 in Ω, u|t=0 = u0, ∂tu|t=0 = u1, u|x=0 = 0. (3.12)

Then for all T, there exists CT such that

‖u‖Lq((0,T);Lr(Ω)) ≤ CT (‖u0‖Ḣβ(Ω) + ‖u1‖Ḣβ−1(Ω)),
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with

1
q
≤ 3

4

(1
2
− 1

r

)
and β = 3

(1
2
− 1

r

)
− 1

q
.

PROOF. Using the square function estimates (3.1),

‖u‖Lq
t Lr

x
�
(∑

j

‖vj‖2Lq
t Lr

x

)1/2
.

Indeed,

‖u‖Lr(Ω) �
∥∥∥∥∥
(∑

j≥0

|vj|2
)1/2∥∥∥∥∥

Lr(Ω)
=

∥∥∥∥∥
∑
j≥0

|vj|2
∥∥∥∥∥

1/2

Lr/2(Ω)

�
{∑

j≥0

‖v2
j ‖Lr/2(Ω)

}1/2
=

{∑
j≥0

‖vj‖2Lr(Ω)

}1/2
.

Hence,

‖u‖Lq
t Lr

x
�
∥∥∥∥∥
{∑

j≥0

‖vj‖2Lr
x

}1/2∥∥∥∥∥
Lq

t

=

{∥∥∥∥∥
∑
j≥0

‖vj‖2Lr
x

∥∥∥∥∥
Lq/2

t

}1/2
,

�
{∑

j≥0

‖‖vj‖2Lr
x
‖Lq/2

t

}1/2
=

{∑
j≥0

‖vj‖2Lq
t Lr

x

}1/2
.

The solution u to the wave equation (3.12) with localised initial data in frequency
1/h = 2j is given by

u =
∑

j

vj where vj = U̇(t)χ(2−jDt)u0 +U(t)χ(2−jDt)u1.

Therefore,

‖u‖Lq
t Lr

x
�
(∑

j

‖U̇(t)χ(2−jDt)u0‖2Lq
t Lr

x
+ ‖U(t)χ(2−jDt)u1‖2Lq

t Lr
x

)1/2
,

�
(∑

j

22jβ‖χ(2−jDt)u0‖2L2 + 22j(β−1)‖χ(2−jDt)u1‖2L2

)1/2
,

�
(∑

j

22jβ‖χ(2−jDt)u0‖2L2

)1/2
+

(∑
j

22j(β−1)‖χ(2−jDt)u1‖2L2

)1/2
,

� ‖u0‖Ḣβ(Ω) + ‖u1‖Ḣβ−1(Ω),

where we used Minkowski’s inequality in the third line. �
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4. Application

We can use the Strichartz estimates (Theorem 2.1) to obtain the well posedness of
the following energy critical nonlinear wave equation in (Ω,Δ):

(∂2
t − Δ)u + u5 = 0 in Rt ×Ω,

u|t=0 = u0, ∂tu|t=0 = u1, u|x=0 = 0.
(4.1)

The solutions to (4.1) satisfy an energy conservation law:

E(u(t), ∂tu(t)) =
∫
Ω

(1
2
|∇u(t, x)|2 + 1

2
|∂tu(t, x)|2 + 1

6
|u(t, x)|6

)
dx = E(u0, u1).

For initial data (u0, u1) ∈ H1
0(Ω) × L2(Ω), Theorem 2.1 allows the Strichartz triplet q =

5, r = 10, β = 1 and we get

‖u‖L5((0,T);L10(Ω)) ≤ CT (‖u0‖H1(Ω) + ‖u1‖L2(Ω)).

As a consequence, the critical nonlinear wave equation (4.1) is locally well posed in

XT = C0([0, T]; H1
0(Ω)) ∩ L5((0, T); L10(Ω)) × C0([0, T]; L2(Ω)).

Moreover, with the arguments in [6], we can extend local to global existence for
arbitrary (finite energy) data.
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