Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-17T21:27:30.409Z Has data issue: false hasContentIssue false

Attention and multisensory modulation argue against total encapsulation

Published online by Cambridge University Press:  05 January 2017

Benjamin de Haas
Affiliation:
Institute of Cognitive Neuroscience, University College London, WC1N 3AR London, United Kingdom. [email protected]@ucl.ac.ukhttps://www.ucl.ac.uk/pals/research/experimental-psychology/person/benjamin-de-haas/https://sampendu.wordpress.com/sam-schwarzkopf/ Experimental Psychology, University College London, WC1H 0AP London, United Kingdom
Dietrich Samuel Schwarzkopf
Affiliation:
Institute of Cognitive Neuroscience, University College London, WC1N 3AR London, United Kingdom. [email protected]@ucl.ac.ukhttps://www.ucl.ac.uk/pals/research/experimental-psychology/person/benjamin-de-haas/https://sampendu.wordpress.com/sam-schwarzkopf/ Experimental Psychology, University College London, WC1H 0AP London, United Kingdom
Geraint Rees
Affiliation:
Institute of Cognitive Neuroscience, University College London, WC1N 3AR London, United Kingdom. [email protected]@ucl.ac.ukhttps://www.ucl.ac.uk/pals/research/experimental-psychology/person/benjamin-de-haas/https://sampendu.wordpress.com/sam-schwarzkopf/ Wellcome Trust Centre for Neuroimaging, University College London, WC1N 3BG London, United Kingdom. [email protected]://www.fil.ion.ucl.ac.uk/~grees/

Abstract

Firestone & Scholl (F&S) postulate that vision proceeds without any direct interference from cognition. We argue that this view is extreme and not in line with the available evidence. Specifically, we discuss two well-established counterexamples: Attention directly affects core aspects of visual processing, and multisensory modulations of vision originate on multiple levels, some of which are unlikely to fall “within perception.”

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrams, J., Barbot, A. & Carrasco, M. (2010) Voluntary attention increases perceived spatial frequency. Attention, Perception and Psychophysics 72(6):1510–21. doi:10.3758/APP.72.6.1510.Google Scholar
Anton-Erxleben, K., Abrams, J. & Carrasco, M. (2011) Equality judgments cannot distinguish between attention effects on appearance and criterion: A reply to Schneider (2011) Journal of Vision 11(13):8. doi:10.1167/11.13.8.Google Scholar
Anton-Erxleben, K. & Carrasco, M. (2013) Attentional enhancement of spatial resolution: Linking behavioural and neurophysiological evidence. Nature Reviews Neuroscience 14(3):188200. doi:10.1038/nrn3443.Google Scholar
Baruch, O. & Yeshurun, Y. (2014) Attentional attraction of receptive fields can explain spatial and temporal effects of attention. Visual Cognition 22(5):704–36. doi:10.1080/13506285.2014.911235.Google Scholar
Berger, T. D., Martelli, M. & Pelli, D. G. (2003) Flicker flutter: Is an illusory event as good as the real thing? Journal of Vision 3(6):406–12. doi:10:1167/3.6.1.Google Scholar
Bruns, P., Maiworm, M. & Röder, B. (2014) Reward expectation influences audiovisual spatial integration. Attention, Perception and Psychophysics 76(6):1815–27. doi:10.3758/s13414-014-0699-y.CrossRefGoogle ScholarPubMed
Carmel, D., Thorne, J. D., Rees, G. & Lavie, N. (2011) Perceptual load alters visual excitability. Journal of Experimental Psychology: Human Perception and Performance 37(5):1350–60. doi:10.1037/a0024320.Google Scholar
Carrasco, M., Fuller, S. & Ling, S. (2008) Transient attention does increase perceived contrast of suprathreshold stimuli: A reply to Prinzmetal, Long, and Leonhardt (2008) Perception and Psychophysics 70(7):1151–64. doi:10.3758/PP.70.7.1151.Google Scholar
de Haas, B., Cecere, R., Cullen, H., Driver, J. & Romei, V. (2013a) The duration of a co-occurring sound modulates visual detection performance in humans. PLoS ONE 8(1):e54789. doi:10.1371/journal.pone.0054789.Google Scholar
de Haas, B., Kanai, R., Jalkanen, L. & Rees, G. (2012) Grey matter volume in early human visual cortex predicts proneness to the sound-induced flash illusion. Proceedings of the Royal Society B: Biological Sciences 279(1749):4955–61. doi:10.1098/rspb.2012.2132.CrossRefGoogle Scholar
de Haas, B. & Rees, G. (2010) Multiple stages of cross-modal integration in visual processing: Comment on “Crossmodal influences on visual perception” by Shams, L. & Kim, R.. Physics of Life Reviews 7:287–88; discussion 29. PMID 20598657 DOI: 10.1016/j.plrev.2010.06.007.CrossRefGoogle ScholarPubMed
de Haas, B., Schwarzkopf, D. S., Anderson, E. J. & Rees, G. (2014) Perceptual load affects spatial tuning of neuronal populations in human early visual cortex. Current Biology: 24(2):R66–67. doi:10.1016/j.cub.2013.11.061.CrossRefGoogle ScholarPubMed
de Haas, B., Schwarzkopf, D. S., Urner, M. & Rees, G. (2013b) Auditory modulation of visual stimulus encoding in human retinotopic cortex. NeuroImage 70:258–67. doi:10.1016/j.neuroimage.2012.12.061.CrossRefGoogle ScholarPubMed
Dieter, K. C., Hu, B., Knill, D. C., Blake, R. & Tadin, D. (2014) Kinesthesis can make an invisible hand visible. Psychological Science 25(1):6675. doi:10.1177/0956797613497968.Google Scholar
Driver, J. & Noesselt, T. (2008) Multisensory interplay reveals crossmodal influences on “sensory-specific” brain regions, neural responses, and judgments. Neuron 57(1):1123. doi:10.1016/j.neuron.2007.12.013.Google Scholar
Dumoulin, S. O. & Wandell, B. A. (2008) Population receptive field estimates in human visual cortex. NeuroImage 39(2):647–60. doi:10.1016/j.neuroimage.2007.09.034.Google Scholar
Fodor, J. A. (1983) Modularity of mind: An essay on faculty psychology. MIT Press.Google Scholar
Gau, R. & Noppeney, U. (2015) How prior expectations shape multisensory perception. NeuroImage 124(Pt A):876–86. doi:10.1016/j.neuroimage.2015.09.045.Google Scholar
Klein, B. P., Harvey, B. M. & Dumoulin, S. O. (2014) Attraction of position preference by spatial attention throughout human visual cortex. Neuron 84(1):227–37. doi:10.1016/j.neuron.2014.08.047.Google Scholar
Lavie, N. (2005) Distracted and confused?: Selective attention under load. Trends in Cognitive Sciences 9(2):7582. doi:10.1016/j.tics.2004.12.004.CrossRefGoogle ScholarPubMed
Liu, T., Abrams, J. & Carrasco, M. (2009) Voluntary attention enhances contrast appearance. Psychological Science 20(3):354–62.CrossRefGoogle ScholarPubMed
McGurk, H. & MacDonald, J. (1976) Hearing lips and seeing voices. Nature 264:746–48.CrossRefGoogle ScholarPubMed
Montagna, B., Pestilli, F. & Carrasco, M. (2009) Attention trades off spatial acuity. Vision Research 49(7):735–45.Google Scholar
Navarra, J., Alsius, A., Soto-Faraco, S. & Spence, C. (2010) Assessing the role of attention in the audiovisual integration of speech. Information Fusion 11(1):411. doi:10.1016/j.inffus.2009.04.001.Google Scholar
Pilgramm, S., de Haas, B., Helm, F., Zentgraf, K., Stark, R., Munzert, J. & Krüger, B. (2016) Motor imagery of hand actions: Decoding the content of motor imagery from brain activity in frontal and parietal motor areas. Human Brain Mapping 37(1):8193. doi:10.1002/hbm.23015.CrossRefGoogle ScholarPubMed
Rees, G., Frith, C. D. & Lavie, N. (1997) Modulating irrelevant motion perception by varying attentional load in an unrelated task. Science 278(5343):1616–19.Google Scholar
Romei, V., de Haas, B., Mok, R. M. & Driver, J. (2011) Auditory stimulus timing influences perceived duration of co-occurring visual stimuli. Frontiers in Psychology 2:215. doi:10.3389/fpsyg.2011.00215.Google Scholar
Shams, L., Kamitani, Y. & Shimojo, S. (2000) Illusions: What you see is what you hear. Nature 408:788.Google Scholar
Suzuki, S. & Cavanagh, P. (1997) Focused attention distorts visual space: An attentional repulsion effect. Journal of Experimental Psychology: Human Perception and Performance 23(2):443–63.Google ScholarPubMed
Thomas, G. (1941) Experimental study of the influence of vision on sound localization. Journal of Experimental Psychology 28(2):163–77.CrossRefGoogle Scholar
Vetter, P., Smith, F. W. & Muckli, L. (2014) Decoding sound and imagery content in early visual cortex. Current Biology 24(11):1256–62. doi:10.1016/j.cub.2014.04.020.Google Scholar
Watkins, S., Shams, L., Tanaka, S., Haynes, J.-D. & Rees, G. (2006) Sound alters activity in human V1 in association with illusory visual perception. NeuroImage 31(3):1247–56. doi:10.1016/j.neuroimage.2006.01.016.Google Scholar
Womelsdorf, T., Anton-Erxleben, K. & Treue, S. (2008) Receptive field shift and shrinkage in macaque middle temporal area through attentional gain modulation. The Journal of Neuroscience 28(36):8934–44. doi:10.1523/JNEUROSCI.4030-07.2008.CrossRefGoogle ScholarPubMed