Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-03T11:18:25.047Z Has data issue: false hasContentIssue false

Taylor vortices versus Taylor columns

Published online by Cambridge University Press:  30 May 2014

Laurette S. Tuckerman*
Affiliation:
PMMH (UMR 7636 CNRS - ESPCI - UPMC Paris 6 - UPD Paris 7), 75005 Paris, France
*
Email address for correspondence: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Taylor–Couette flow is inevitably associated with the visually appealing toroidal vortices, waves, and spirals that are instigated by linear instability. The linearly stable regimes, however, pose a new challenge: do they undergo transition to turbulence and if so, what is its mechanism? Maretzke et al. (J. Fluid Mech., vol. 742, 2014, pp. 254–290) begin to address this question by determining the transient growth over the entire parameter space. They find that in the quasi-Keplerian regime, the optimal perturbations take the form of Taylor columns and that the maximum energy achieved depends only on the shear.

Type
Focus on Fluids
Copyright
© 2014 Cambridge University Press 

References

Andereck, C. D., Liu, S. S. & Swinney, H. L. 1986 Flow regimes in a circular Couette system with independently rotating cylinders. J. Fluid Mech. 164, 155183.Google Scholar
Avila, M. 2012 Stability and angular-momentum transport of fluid flows between corotating cylinders. Phys. Rev. Lett. 108, 124501.CrossRefGoogle ScholarPubMed
Balbus, S. A. 2011 Fluid dynamics: a turbulent matter. Nature 470, 475476.CrossRefGoogle ScholarPubMed
Balbus, S. & Hawley, J. 1991 A powerful local shear instability in weakly magnetized disks. I. Linear analysis. Astrophys. J. 376, 214222.CrossRefGoogle Scholar
Boberg, L. & Brosa, U. 1988 Onset of turbulence in a pipe. Z. Naturforsch. 43a, 697726.CrossRefGoogle Scholar
Borrero-Echeverry, D., Schatz, M. F. & Tagg, R. 2010 Transient turbulence in Taylor–Couette flow. Phys. Rev. Lett. 81, 025301.Google ScholarPubMed
Busse, F. H. 2007 Bounds on the momentum transport by turbulent shear flow in rotating systems. J. Fluid Mech. 583, 303311.CrossRefGoogle Scholar
Coles, D. 1965 Transition in circular Couette flow. J. Fluid Mech. 21, 385425.Google Scholar
Dubrulle, B., Dauchot, O., Daviaud, F., Longaretti, P.-Y., Richard, D. & Zahn, J.-P. 2005 Stability and turbulent transport in Taylor–Couette flow from analysis of experimental data. Phys. Fluids 17 (9), 095103.Google Scholar
Faisst, H. & Eckhardt, B. 2000 Transition from the Couette–Taylor system to the plane Couette system. Phys. Rev. E 61, 72277230.Google Scholar
Gallet, B., Doering, C. R. & Spiegel, E. A. 2010 Destabilizing Taylor–Couette flow with suction. Phys. Fluids 22 (3), 034105.Google Scholar
van Gils, D., Huisman, S., Grossmann, S., Sun, C. & Lohse, D. 2012 Optimal Taylor–Couette turbulence. J. Fluid Mech. 706, 118149.Google Scholar
Hristova, H., Roch, S., Schmid, P. J. & Tuckerman, L. S. 2002 Transient growth in Taylor–Couette flow. Phys. Fluids 14 (10), 34753484.Google Scholar
Le Bars, M. & Le Gal, P. 2007 Experimental analysis of the stratorotational instability in a cylindrical Couette flow. Phys. Rev. Lett. 99, 064502.CrossRefGoogle Scholar
Maretzke, S., Hof, B. & Avila, M. 2014 Transient growth in linearly stable Taylor–Couette flows. J. Fluid Mech. 742, 254290.Google Scholar
Meseguer, A. 2002 Energy transient growth in the Taylor–Couette problem. Phys. Fluids 14, 16551665.Google Scholar
Nagata, M. 1998 Tertiary solutions and their stability in rotating plane Couette flow. J. Fluid Mech. 358, 357378.CrossRefGoogle Scholar
Paoletti, M. S. & Lathrop, D. P. 2011 Angular momentum transport in turbulent flow between independently rotating cylinders. Phys. Rev. Lett. 106, 024501.Google Scholar
Pringle, J. E. 1981 Accretion discs in astrophysics. Annu. Rev. Astron. Astrophys. 19, 137162.Google Scholar
Tagg, R. 1994 The Couette–Taylor problem. Nonlinear Sci. Today 4 (3), 125.Google Scholar
Trefethen, L., Trefethen, A., Reddy, S. C. & Driscoll, T. 1993 Hydrodynamic stability without eigenvalues. Science 261, 578584.Google Scholar
Waleffe, F. 1997 On a self-sustaining process in shear flows. Phys. Fluids 9 (6), 883900.Google Scholar
Yecko, P. A. 2004 Accretion disk instability revisited. Astron. Astrophys. 425, 385393.Google Scholar