Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T00:53:59.505Z Has data issue: false hasContentIssue false

A NEW $\boldsymbol {q}$-ANALOGUE OF VAN HAMME’S (A.2) SUPERCONGRUENCE

Published online by Cambridge University Press:  20 May 2022

VICTOR J. W. GUO*
Affiliation:
School of Mathematics and Statistics, Huaiyin Normal University, Huai’an 223300, Jiangsu, PR China
*
Rights & Permissions [Opens in a new window]

Abstract

We give a new q-analogue of the (A.2) supercongruence of Van Hamme. Our proof employs Andrews’ multiseries generalisation of Watson’s $_{8}\phi _{7}$ transformation, Andrews’ terminating q-analogue of Watson’s $_{3}F_{2}$ summation, a q-Watson-type summation due to Wei–Gong–Li and the creative microscoping method, developed by the author and Zudilin [‘A q-microscope for supercongruences’, Adv. Math. 346 (2019), 329–358]. As a conclusion, we confirm a weaker form of Conjecture 4.5 by the author [‘Some generalizations of a supercongruence of van Hamme’, Integral Transforms Spec. Funct. 28 (2017), 888–899].

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

1 Introduction

India’s great mathematician Ramanujan mentioned the formula

(1.1) $$ \begin{align} \sum_{k=0}^{\infty} (-1)^{k}(4k+1)\frac{(\tfrac{1}{2})_{k}^{5}}{k!^{5}}= \frac{2}{\Gamma(\tfrac{3}{4})^{4}} \end{align} $$

in his second letter to Hardy on February 27, 1913. Here $\Gamma (x)$ stands for the Gamma function and $(a)_{k}=a(a+1)\cdots (a+k-1)$ is the rising factorial. In 1997, Van Hamme [Reference Van Hamme15] observed that thirteen Ramanujan-type formulae possess neat p-adic analogues. For instance, the formula (1.1) corresponds to the supercongruence

(1.2) $$ \begin{align} \sum_{k=0}^{(p-1)/2} (-1)^{k}(4k+1)\frac{(\tfrac{1}{2})_{k}^{5}}{k!^{5}} \equiv \begin{cases} -\dfrac{p}{\Gamma_{p}(\tfrac{3}{4})^{4}} \pmod{p^{3}} &\text{if }p\equiv 1\pmod 4\text{,}\\ 0\pmod{p^{3}} &\text{if }p\equiv 3\pmod 4\text{,} \end{cases} \end{align} $$

(tagged as (A.2) in [Reference Van Hamme15]). Here and in what follows, p always denotes an odd prime and $\Gamma _{p}(x)$ is Morita’s p-adic Gamma function (see, for example, [Reference Robert12, Ch. 7]). The supercongruence (1.2) was first confirmed by McCarthy and Osburn [Reference McCarthy and Osburn11]. Swisher [Reference Swisher13] further proved that (1.2) is true modulo $p^{5}$ for $p\equiv 1\pmod {4}$ and $p>5$ . Liu [Reference Liu10] extended (1.2) for $p\equiv 3\pmod {4}$ to a congruence modulo $p^{4}$ . Recently, among other things, Wei [Reference Wei18] gave the following generalisation of the second case of (1.2):

$$ \begin{align*} \sum_{k=0}^{(p-1)/2} (-1)^{k}(4k+1)\frac{(\tfrac{1}{2})_{k}^{5}}{k!^{5}} \equiv p^{2}\frac{(\tfrac{3}{4})_{(p-1)/2}}{(\tfrac{5}{4})_{(p-1)/2}}\pmod{p^{5}} \quad\text{for }p\equiv 3\pmod 4\text{.} \end{align*} $$

During the past few years, there has been considerable interest in q-analogues of supercongruences. In particular, using the creative microscoping method introduced by the author and Zudilin [Reference Guo and Zudilin7], Wang and Yue [Reference Wang and Yue16], together with the author [Reference Guo5], gave a q-analogue of (1.2): modulo $[n]\Phi _{n}(q)^{2}$ ,

(1.3) $$ \begin{align} \sum_{k=0}^{M} (-1)^{k}[4k+1]\frac{(q;q^{2})_{k}^{4}(q^{2};q^{4})_{k}}{(q^{2};q^{2})_{k}^{4}(q^{4};q^{4})_{k}}q^{k} \equiv \begin{cases} \dfrac{(q^{2};q^{4})_{(n-1)/4}^{2}}{(q^{4};q^{4})_{(n-1)/4}^{2}}[n] &\text{if }n\equiv 1\pmod 4\text{,}\\ 0 &\text{if }n\equiv 3\pmod 4\text{,} \end{cases} \end{align} $$

where $M=(n-1)/2$ or $n-1$ . Wei [Reference Wei17, Reference Wei18] further generalised (1.3) to the moduli $[n]\Phi _{n}(q)^{3}$ and $[n]\Phi _{n}(q)^{4}$ .

We now need to familiarise ourselves with the standard q-notation. The q-shifted factorial is defined by $(a;q)_{n}=(1-a)(1-aq)\cdots (1-aq^{n-1})$ for $n\geqslant 1$ and $(a;q)_{0}=1$ . For simplicity, we also use the abbreviated notation $(a_{1},a_{2},\ldots ,a_{m};q)_{n}=(a_{1};q)_{n} (a_{2};q)_{n}\cdots (a_{m};q)_{n}$ for $n\geqslant 0$ . The q-integer is $[n]=[n]_{q}=(1-q^{n})/(1-q^{n})$ . The nth cyclotomic polynomial $\Phi _{n}(q)$ is given by

$$ \begin{align*} \Phi_{n}(q)=\prod_{\substack{1\leqslant k\leqslant n\\ \gcd(k,n)=1}}(q-\zeta^{k}), \end{align*} $$

where $\zeta $ is a primitive nth root of unity.

Letting $n=p\equiv 1\pmod 4$ and taking $q\to 1$ in (1.3), we obtain

(1.4) $$ \begin{align} \sum_{k=0}^{(p-1)/2} (-1)^{k}(4k+1)\frac{(\tfrac{1}{2})_{k}^{5}}{k!^{5}} \equiv \frac{(\tfrac{1}{2})_{(p-1)/4}^{2}}{(1)_{(p-1)/4}^{2}}p={-1/2 \choose (p-1)/4}^{2} p \pmod{p^{3}}. \end{align} $$

From [Reference Van Hamme14, Theorem 3], we know that

$$ \begin{align*}{-1/2 \choose (p-1)/4}\equiv \frac{\Gamma_{p}(\tfrac{1}{4})^{2}}{\Gamma_{p}(\tfrac{1}{2})}\pmod{p^{2}}. \end{align*} $$

Since $\Gamma _{p}(\tfrac 12)^{2}=-1$ for $p\equiv 1\pmod {4}$ , by the identity $\Gamma _{p}(\tfrac 14)^{4} \Gamma _{p}(\tfrac 34)^{4}=1$ , we see that the supercongruence (1.4) is just (1.2) for $p\equiv 1\pmod {4}$ . This implies that (1.3) for $M=(n-1)/2$ really is a q-analogue of the (A.2) supercongruence of Van Hamme.

Note that supercongruences may have different q-analogues. See [Reference Guo and Zudilin8] for such examples. In this note, we shall give the following new q-analogue of (1.2).

Theorem 1.1. Let $n>1$ be an odd integer. Then, modulo $[n]_{q^{2}}\Phi _{n}(q^{2})^{2}$ ,

(1.5) $$ \begin{align} &\sum_{k=0}^{M} (-1)^{k}[4k+1]_{q^{2}}[4k+1]^{2}\frac{(q^{2};q^{4})_{k}^{4}(q^{4};q^{8})_{k}} {(q^{4};q^{4})_{k}^{4}(q^{8};q^{8})_{k}}q^{-2k} \notag\\ &\quad\equiv \begin{cases} -\dfrac{2q(q^{4};q^{8})_{(n-1)/4}^{2}}{(1+q^{2})(q^{8};q^{8})_{(n-1)/4}^{2}}[n]_{q^{2}}&\text{if }n\equiv 1\pmod{4}\text{,}\\[10pt] \dfrac{(1+q)^{2}(q^{4},q^{12}; q^{8})_{(n-3)/4}} {(1+q^{2})(1+q^{4})(q^{8},q^{16}; q^{8})_{(n-3)/4}}[n]_{q^{2}}& \text{if }n\equiv 3\pmod{4}\text{,} \end{cases} \end{align} $$

where $M=(n-1)/2$ or $n-1$ .

For n prime, letting $q\to -1$ in Theorem 1.1, we get (1.2). However, for n prime and $q\to 1$ in Theorem 1.1, we arrive at

(1.6) $$ \begin{align} \sum_{k=0}^{(p-1)/2} (-1)^{k}(4k+1)^{3}\frac{(\tfrac{1}{2})_{k}^{5}}{k!^{5}} \equiv \begin{cases} \dfrac{p}{\Gamma_{p}(\tfrac{3}{4})^{4}} \pmod{p^{3}} &\text{if }p\equiv 1\pmod 4\text{,}\\[10pt] \dfrac{(\tfrac{1}{2})_{(p-3)/4}(\tfrac{3}{2})_{(p-3)/4}p}{(\frac{p-3}{4})!(\frac{p+1}{4})!}\pmod{p^{3}} &\text{if }p\equiv 3\pmod 4\text{.} \end{cases} \end{align} $$

Thus, Theorem 1.1 may be considered as a common q-analogue of (1.2) and (1.6).

Letting n be an odd prime power and $q\to 1$ in (1.3) and (1.5), we are led to the following results. If $p^{r}\equiv 1\pmod {4}$ , then

(1.7) $$ \begin{align} \sum_{k=0}^{(p^{r}-1)/d} (-1)^{k}(4k+1)\frac{(\tfrac{1}{2})_{k}^{5}}{k!^{5}} &\equiv {(p^{r}-1)/2\choose (p^{r}-1)/4}^{2}\frac{p^{r}}{2^{p^{r}-1}} \pmod{p^{r+2}}, \end{align} $$
(1.8) $$ \begin{align} \sum_{k=0}^{(p^{r}-1)/d} (-1)^{k}(4k+1)^{3}\frac{(\tfrac{1}{2})_{k}^{5}}{k!^{5}} &\equiv -{(p^{r}-1)/2\choose (p^{r}-1)/4}^{2}\frac{p^{r}}{2^{p^{r}-1}} \pmod{p^{r+2}}, \end{align} $$

where $d=1$ or $2$ . Since $4+1+(4k+1)^{3}=2(4k+1)(8k^{2}+4k+1)$ , combining (1.7) and (1.8), we obtain the following conclusion.

Corollary 1.2. If $p^{r}\equiv 1\pmod {4}$ , then

(1.9) $$ \begin{align} \sum_{k=0}^{(p^{r}-1)/d} (-1)^{k}(4k+1)(8k^{2}+4k+1) \frac{(\tfrac{1}{2})_{k}^{5}}{k!^{5}} &\equiv 0\pmod{p^{r+2}}, \end{align} $$

where $d=1$ or $2$ .

Note that the author [Reference Guo4, Conjecture 4.5] conjectured that (1.9) is true modulo $p^{3r}$ for $p\equiv 1\pmod {4}$ .

We shall prove Theorem 1.1 in the next section. In Section 3, we raise two related conjectures on supercongruences.

2 Proof of Theorem 1.1

We first give the following q-congruence. See [Reference Guo and Schlosser6, Lemma 3.1] for a short proof.

Lemma 2.1. Let n be a positive odd integer. Then, for $0\leqslant k\leqslant (n-1)/2$ ,

$$ \begin{align*} \frac{(aq;q^{2})_{(n-1)/2-k}}{(q^{2}/a;q^{2})_{(n-1)/2-k}} \equiv (-a)^{(n-1)/2-2k}\frac{(aq;q^{2})_{k}}{(q^{2}/a;q^{2})_{k}} q^{(n-1)^{2}/4+k} \pmod{\Phi_{n}(q)}. \end{align*} $$

We will use a powerful transformation of Andrews (see [Reference Andrews and Askey1, Theorem 4]), which can be stated as follows:

(2.1) $$ \begin{align} &\sum_{k\geqslant 0}\frac{(a,q\sqrt{a},-q\sqrt{a},b_{1},c_{1},\ldots,b_{m},c_{m},q^{-N};q)_{k}} {(q,\!\sqrt{a},-\sqrt{a},aq/b_{1},aq/c_{1},\ldots,aq/b_{m},aq/c_{m},aq^{N+1};q)_{k}} \bigg(\frac{a^{m}q^{m+N}}{b_{1}c_{1}\cdots b_{m}c_{m}}\bigg)^{k} \notag\\ &\quad=\frac{(aq,aq/b_{m}c_{m};q)_{N}}{(aq/b_{m},aq/c_{m};q)_{N}} \sum_{j_{1},\ldots,j_{m-1}\geqslant 0} \frac{(aq/b_{1}c_{1};q)_{j_{1}}\cdots(aq/b_{m-1}c_{m-1};q)_{j_{m-1}}} {(q;q)_{j_{1}}\cdots(q;q)_{j_{m-1}}} \notag\\ &\qquad\times\frac{(b_{2},c_{2};q)_{j_{1}}\cdots(b_{m},c_{m};q)_{j_{1}+\cdots+j_{m-1}}} {(aq/b_{1},aq/c_{1};q)_{j_{1}} \cdots(aq/b_{m-1},aq/c_{m-1};q)_{j_{1}+\cdots+j_{m-1}}} \notag\\ &\qquad\times\frac{(q^{-N};q)_{j_{1}+\cdots+j_{m-1}}} {(b_{m}c_{m}q^{-N}/a;q)_{j_{1}+\cdots+j_{m-1}}} \frac{(aq)^{\,j_{m-2}+\cdots+(m-2)j_{1}} q^{j_{1}+\cdots+j_{m-1}}} {(b_{2}c_{2})^{\,j_{1}}\cdots(b_{m-1}c_{m-1})^{j_{1}+\cdots+j_{m-2}}}. \end{align} $$

It should be pointed out that Andrews’ transformation is a multiseries generalisation of Watson’s $_{8}\phi _{7}$ transformation:

$$ \begin{align*} & {}_{8}\phi_{7}\!\left[\begin{array}{@{}cccccccc@{}} a,& qa^{{1}/{2}},& -qa^{{1}/{2}}, & b, & c, & d, & e, & q^{-n} \\ & a^{{1}/{2}}, & -a^{{1}/{2}}, & aq/b, & aq/c, & aq/d, & aq/e, & aq^{n+1} \end{array};\, q,\, \frac{a^{2}q^{n+2}}{bcde} \right] \notag\\[5pt] &\quad =\frac{(aq, aq/de;q)_{n}} {(aq/d, aq/e;q)_{n}} \,{}_{4}\phi_{3}\!\left[\begin{array}{@{}c@{}} aq/bc,\ d,\ e,\ q^{-n} \\ aq/b,\, aq/c,\, deq^{-n}/a \end{array};\, q,\, q \right] \end{align*} $$

(see [Reference Gasper and Rahman3, Appendix (III.18)]), where the basic hypergeometric series $_{r+1}\phi _{r}$ is defined as

$$ \begin{align*}_{r+1}\phi_{r}\left[\begin{array}{@{}c@{}} a_{1},a_{2},\ldots,a_{r+1}\\ b_{1},b_{2},\ldots,b_{r} \end{array};\,q,\, z \right] =\sum_{k=0}^{\infty}\frac{(a_{1},a_{2},\ldots, a_{r+1};q)_{k} } {(q,b_{1},\ldots,b_{r};q)_{k}} z^{k}. \end{align*} $$

We shall also use Andrews’ terminating q-analogue of Watson’s $_{3}F_{2}$ summation (see [Reference Andrews2] or [Reference Gasper and Rahman3, (II.17)]):

(2.2) $$ \begin{align} {}_{4}\phi_{3}\left[\begin{array}{@{}c@{}} q^{-n},\, a^{2}q^{n+1},\,c,\, -c \\ aq,\, -aq,\, c^{2}\end{array};\,q,q\right] =\begin{cases} 0&\text{if }\textit{n}\text{ is odd},\\ \dfrac{c^{n}(q, a^{2}q^{2}/c^{2}; q^{2})_{n/2}} {(a^{2}q^{2},\, c^{2}q; q^{2})_{n/2}}& \text{if }\textit{n}\text{ is even,} \end{cases} \end{align} $$

and the following q-Watson-type summation due to Wei et al. [Reference Wei, Gong and Li19, Corollary 5]:

(2.3) $$ \begin{align} {}_{4}\phi_{3}\bigg[\begin{array}{@{}c@{}} q^{-n},\, a^{2}q^{n+1},\,c,\, -cq \\ aq,\, -aq,\, c^{2}q\end{array};\,q,q\bigg] =\begin{cases} \dfrac{c^{n}(q;q^{2})_{(n+1)/2}(a^{2}q^{2}/c^{2}; q^{2})_{(n-1)/2}} {(a^{2}q^{2};q^{2})_{(n-1)/2}(c^{2}q; q^{2})_{(n+1)/2}}&\text{if }\textit{n}\text{ is odd},\\[10pt] \dfrac{c^{n}(q, a^{2}q^{2}/c^{2}; q^{2})_{n/2}} {(a^{2}q^{2},\, c^{2}q; q^{2})_{n/2}}& \text{if }\textit{n}\text{ is even.} \end{cases} \end{align} $$

We first prove the following parametric version of Theorem 1.1.

Theorem 2.2. Let $n>1$ be an odd integer. Then, modulo $\Phi _{n}(q^{2})(1-aq^{2n})(a-q^{2n})$ ,

(2.4) $$ \begin{align} &\sum_{k=0}^{(n-1)/2} (-1)^{k}[4k+1]_{q^{2}}[4k+1]^{2}\frac{(aq^{2},q^{2}/a;q^{4})_{k} (q^{2};q^{4})_{k}^{2}(q^{4};q^{8})_{k}} {(aq^{4},q^{4}/a;q^{4})_{k}(q^{4};q^{4})_{k}^{2}(q^{8};q^{8})_{k}}q^{-2k} \notag\\ &\quad\equiv \begin{cases} \bigg(1-\dfrac{(1+q)(1-aq^{2})(1-q^{2}/a)}{(1-q)(1-q^{4})}\bigg) \dfrac{(q^{4};q^{8})_{(n-1)/4}^{2}}{(q^{8};q^{8})_{(n-1)/4}^{2}}[n]_{q^{2}}&\text{if }n\equiv 1\pmod{4}\text{,}\\[10pt] \dfrac{(1+q)(1-aq^{2})(1-q^{2}/a)(q^{4},q^{12}; q^{8})_{(n-3)/4}} {(1-q)(1-q^{8})(q^{8},q^{16}; q^{8})_{(n-3)/4}}[n]_{q^{2}}& \text{if }n\equiv 3\pmod{4}\text{.} \end{cases} \end{align} $$

Proof. For $a=q^{-2n}$ or $a=q^{2n}$ , the left-hand side of (2.4) may be written as

$$ \begin{align*} &\sum_{k=0}^{(n-1)/2} (-1)^{k}[4k+1]_{q^{2}}[4k+1]^{2}\frac{(q^{2-2n},q^{2+2n};q^{4})_{k} (q^{2};q^{4})_{k}^{2}(q^{4};q^{8})_{k}} {(q^{4-2n},q^{4+2n};q^{4})_{k}(q^{4};q^{4})_{k}^{2}(q^{8};q^{8})_{k}}q^{-2k}. \end{align*} $$

Letting $m=3$ , $q\mapsto q^{4}$ , $a=q^{2}$ , $b_{1}=c_{1}=q^{5}$ , $b_{2}=c_{2}=q^{2}$ , $b_{3}=-q^{2}$ , $c_{3}=q^{2+2n}$ and $N=(n-1)/2$ in (2.1), we see that the above summation is equal to

(2.5) $$ \begin{align} &\frac{(q^{6},-q^{2-2n};q^{4})_{(n-1)/2}}{(-q^{4},q^{4-2n};q^{4})_{(n-1)/2}} \notag\\ &\quad\times \sum_{j_{1},j_{2}\geqslant 0} \frac{(q^{-4};q^{4})_{j_{1}}(q^{2};q^{4})_{j_{2}}(q^{2},q^{2};q^{4})_{j_{1}}(-q^{2},q^{2+2n},q^{2-2n};q^{4})_{j_{1}+j_{2}}}{(q^{4};q^{4})_{j_{1}} (q^{4};q^{4})_{j_{2}}(q,q;q^{4})_{j_{1}} (q^{4},q^{4},-q^{4};q^{4})_{j_{1}+j_{2}}}q^{6j_{1}+4j_{2}} \notag\\ &=(-1)^{(n-1)/2}q^{1-n}[n]_{q^{2}} \sum_{j_{2}=0}^{(n-1)/2}\frac{(q^{2},-q^{2},q^{2+2n},q^{2-2n};q^{4})_{j_{2}}}{(q^{4},q^{4},q^{4},-q^{4};q^{4})_{j_{2}}}q^{4j_{2}} \notag\\ &\quad+(-1)^{(n+1)/2}q^{3-n}[n]_{q^{2}} (1+q)^{2}\sum_{j_{2}=0}^{(n-3)/2}\frac{(q^{2};q^{4})_{j_{2}}(-q^{2},q^{2+2n},q^{2-2n};q^{4})_{j_{2}+1}}{(q^{4};q^{4}){j_{2}}(q^{4},q^{4},-q^{4};q^{4})_{j_{2}+1}}q^{4j_{2}}, \end{align} $$

where we have used the fact that $(q^{-4};q^{4})_{j_{1}}=0$ for $j_{1}>1$ .

Taking $q\mapsto q^{4}$ , $a=1$ , $c=q^{2}$ and $n\mapsto (n-1)/2$ in (2.2), we have

$$ \begin{align*} \sum_{j_{2}=0}^{(n-1)/2}\frac{(q^{2},-q^{2},q^{2+2n},q^{2-2n};q^{4})_{j_{2}}}{(q^{4},q^{4},q^{4},-q^{4};q^{4})_{j_{2}}}q^{4j_{2}} =\begin{cases} q^{n-1}\dfrac{(q^{4}; q^{8})_{(n-1)/4}^{2}} {(q^{8}; q^{8})_{(n-1)/4}^{2}}&\text{if }n\equiv 1\pmod{4}\text{,}\\[5pt] 0& \text{if }n\equiv 3\pmod{4}\text{.} \end{cases} \end{align*} $$

Similarly, taking $q\mapsto q^{4}$ , $a=q^{4}$ , $c=q^{2}$ and $n\mapsto (n-3)/2$ in (2.3), we get

$$ \begin{align*} &\sum_{j_{2}=0}^{(n-3)/2}\frac{(q^{2};q^{4})_{j_{2}}(-q^{2},q^{2+2n},q^{2-2n};q^{4})_{j_{2}+1}}{(q^{4};q^{4}){j_{2}}(q^{4},q^{4},-q^{4};q^{4})_{j_{2}+1}}q^{4j_{2}} \\ &\quad=\frac{(1+q^{2})(1-q^{2+2n})(1-q^{2-2n})}{(1-q^{4})^{2}(1+q^{4})} \sum_{j_{2}=0}^{(n-3)/2}\frac{(q^{2},-q^{6},q^{6+2n},q^{6-2n};q^{4})_{j_{2}}}{(q^{4},q^{8},q^{8},-q^{8};q^{4})_{j_{2}}}q^{4j_{2}}\\ &\quad=\begin{cases} q^{n-3}\dfrac{(1+q^{2})(1-q^{2+2n})(1-q^{2-2n})(q^{4}; q^{8})_{(n-1)/4}^{2}} {(1-q^{4})^{2}(q^{8}; q^{8})_{(n-1)/4}^{2}}&\text{if }n\equiv 1\pmod{4}\text{,}\\[10pt] q^{n-3}\dfrac{(1+q^{2})(1-q^{2+2n})(1-q^{2-2n})(q^{4},q^{12}; q^{8})_{(n-3)/4}} {(1-q^{4})^{2}(1+q^{4})(q^{8},q^{16}; q^{8})_{(n-3)/4}}& \text{if }n\equiv 3\pmod{4}\text{.} \end{cases} \end{align*} $$

Substituting the above two identities into (2.5), we obtain

$$ \begin{align*} &\sum_{k=0}^{(n-1)/2} (-1)^{k}[4k+1]_{q^{2}}[4k+1]^{2}\frac{(q^{2-2n},q^{2+2n};q^{4})_{k} (q^{2};q^{4})_{k}^{2}(q^{4};q^{8})_{k}} {(q^{4-2n},q^{4+2n};q^{4})_{k}(q^{4};q^{4})_{k}^{2}(q^{8};q^{8})_{k}}q^{-2k}\\ &\quad= \begin{cases} \bigg(1-\dfrac{(1+q)(1-q^{2+2n})(1-q^{2-2n})}{(1-q)(1-q^{4})}\bigg) \dfrac{(q^{4};q^{8})_{(n-1)/4}^{2}}{(q^{8};q^{8})_{(n-1)/4}^{2}}[n]_{q^{2}}&\text{if }n\equiv 1\pmod{4}\text{,}\\[10pt] \dfrac{(1+q)(1-q^{2+2n})(1-q^{2-2n})(q^{4},q^{12}; q^{8})_{(n-3)/4}} {(1-q)(1-q^{8})(q^{8},q^{16}; q^{8})_{(n-3)/4}}[n]_{q^{2}}& \text{if }n\equiv 3\pmod{4}\text{.} \end{cases} \end{align*} $$

This proves that both sides of (2.4) are equal when $a=q^{\pm 2n}$ . Namely, the q-congruence (2.4) holds modulo $1-aq^{2n}$ or $a-q^{2n}$ .

Moreover, in view of Lemma 2.1, we can verify that the kth and $((n-1)/2-k)$ th summands cancel each other modulo $\Phi _{n}(q^{2})$ for any positive odd integer n. It follows that

(2.6) $$ \begin{align} \sum_{k=0}^{(n-1)/2} (-1)^{k}[4k+1]_{q^{2}}[4k+1]^{2}\frac{(aq^{2},q^{2}/a;q^{4})_{k} (q^{2};q^{4})_{k}^{2}(q^{4};q^{8})_{k}} {(aq^{4},q^{4}/a;q^{4})_{k}(q^{4};q^{4})_{k}^{2}(q^{8};q^{8})_{k}}q^{-2k} \equiv 0 \pmod{\Phi_{n}(q^{2})}. \end{align} $$

Noticing that $[n]_{q^{2}}\equiv 0\pmod {\Phi _{n}(q^{2})}$ for $n>1$ , we conclude that the q-congruence (2.4) also holds modulo $\Phi _{n}(q)$ .

Since $1-aq^{2n}$ , $a-q^{2n}$ and $\Phi _{n}(q^{2})$ are pairwise relatively prime polynomials in q, we complete the proof of the theorem.

Proof of Theorem 1.1.

It is easy to see that the denominators on both sides of (2.4) when $a=1$ are relatively prime to $\Phi _{n}(q^{2})$ . However, when $a=1$ , the polynomial $(1-aq^{2n})(a-q^{2n})$ contains the factor $\Phi _{n}(q^{2})^{2}$ . Therefore, the $a=1$ case of (2.4) implies that (1.5) is true modulo $\Phi _{n}(q^{2})^{3}$ for $M=(n-1)/2$ . Furthermore, since $(q^{2};q^{4})_{k}^{4}(q^{4};q^{8})_{k}/((q^{4};q^{4})_{k}^{4}(q^{8};q^{8})_{k})\equiv 0\pmod {\Phi _{n}(q^{2})^{5}}$ for $(n-1)/2<k\leqslant n-1$ , we see that (1.5) is also true modulo $\Phi _{n}(q^{2})^{3}$ for $M=n-1$ .

It remains to prove the following two q-congruences:

(2.7) $$ \begin{align} \sum_{k=0}^{(n-1)/2} (-1)^{k}[4k+1]_{q^{2}}[4k+1]^{2}\frac{(q^{2};q^{4})_{k}^{4}(q^{4};q^{8})_{k}}{(q^{4};q^{4})_{k}^{4}(q^{8};q^{8})_{k}}q^{-2k} \equiv 0\pmod{[n]_{q^{2}}}, \end{align} $$
(2.8) $$ \begin{align} \hspace{-10pt}\sum_{k=0}^{n-1} (-1)^{k}[4k+1]_{q^{2}}[4k+1]^{2}\frac{(q^{2};q^{4})_{k}^{4}(q^{4};q^{8})_{k}} {(q^{4};q^{4})_{k}^{4}(q^{8};q^{8})_{k}}q^{-2k} \equiv 0\pmod{[n]_{q^{2}}}. \end{align} $$

For $n>1$ , let $\zeta \ne 1$ be an nth root of unity, possibly not primitive. Suppose $\zeta $ is a primitive root of unity of odd degree d satisfying $d\mid n$ . Let $c_{q}(k)$ be the kth term on the left-hand side of the congruences (2.7) and (2.8). Then

$$ \begin{align*} c_{q}(k)=(-1)^{k}[4k+1]_{q^{2}}[4k+1]^{2}\frac{(q^{2};q^{4})_{k}^{4}(q^{4};q^{8})_{k}}{(q^{4};q^{4})_{k}^{4}(q^{8};q^{8})_{k}}q^{-2k}. \end{align*} $$

Observe that (2.6) is true for any odd $n>1$ . Thus, letting $a=1$ and $n=d$ in (2.6), we obtain

$$ \begin{align*} \sum_{k=0}^{(d-1)/2}c_{\zeta}(k)=\sum_{k=0}^{d-1}c_{\zeta}(k)=0 \quad\text{and}\quad\sum_{k=0}^{(d-1)/2}c_{-\zeta}(k)=\sum_{k=0}^{d-1}c_{-\zeta}(k)=0. \end{align*} $$

Noticing that

$$ \begin{align*} \frac{c_{\zeta}(\ell d+k)}{c_{\zeta}(\ell d)} =\lim_{q\to\zeta}\frac{c_{q}(\ell d+k)}{c_{q}(\ell d)} =c_{\zeta}(k), \end{align*} $$

we have

$$ \begin{align*} \sum_{k=0}^{n-1}c_{\zeta}(k)=\sum_{\ell=0}^{n/d-1}\sum_{k=0}^{d-1}c_{\zeta}(\ell d+k) =\sum_{\ell=0}^{n/d-1}c_{\zeta}(\ell d) \sum_{k=0}^{d-1}c_{\zeta}(k)=0, \end{align*} $$

and

$$ \begin{align*} \sum_{k=0}^{(n-1)/2}c_{\zeta}(k) =\sum_{\ell=0}^{(n/d-3)/2} c_{\zeta}(\ell d) \sum_{k=0}^{d-1}c_{\zeta}(k)+\sum_{k=0}^{(d-1)/2}c_{\zeta}((n-d)/2+k)=0. \end{align*} $$

This means that both the sums $\sum _{k=0}^{n-1}c_{q}(k)$ and $\sum _{k=0}^{(n-1)/2}c_{q}(k)$ are divisible by $\Phi _{d}(q)$ . Similarly, we can show that they are also divisible by $\Phi _{d}(-q)$ . Since d can be any divisor of n larger than $1$ , we deduce that each of them is congruent to $0$ modulo

$$ \begin{align*} \prod_{d\mid n,\, d>1}\Phi_{d}(q) \Phi_{d}(-q)=[n]_{q^{2}}, \end{align*} $$

thus establishing (2.7) and (2.8).

3 Two open problems

Swisher [Reference Swisher13] proposed many interesting conjectures on generalisations of Van Hamme’s supercongruences (A.2)–(L.2). Recently, the author and Zudilin [Reference Guo and Zudilin9] have proved some conjectures of Swisher by establishing their q-analogues. Here we would like to propose a similar conjecture.

Conjecture 3.1. Let $p\equiv 1\pmod {4}$ and let $r,s\geqslant 1$ . Then

(3.1) $$ \begin{align} \sum_{k=0}^{(p^{r}-1)/d} (-1)^{k}(4k+1)^{2s+1}\frac{(\tfrac{1}{2})_{k}^{5}}{k!^{5}} \equiv -p\Gamma_{p}(\tfrac{1}{4})^{4}\, \sum_{k=0}^{(p^{r-1}-1)/d} (-1)^{k}(4k+1)^{2s+1}\frac{(\tfrac{1}{2})_{k}^{5}}{k!^{5}} \pmod{p^{3r-2}}, \end{align} $$

where $d=1$ or $2$ .

For $s=0$ , Swisher [Reference Swisher13, (A.3)] and the author [Reference Guo5, Conjecture 4.1] conjectured that (3.1) holds modulo $p^{5r}$ for $p>5$ . From (1.8), we can easily see that (3.1) is true modulo $p^{r}$ for $s=1$ .

Finally, motivated by [Reference Guo4, Conjecture 4.5], we believe that the following generalisation of Corollary 1.2 for p of the form $4k+3$ should be true.

Conjecture 3.2. Let $p\equiv 3\pmod {4}$ and let $r\geqslant 2$ be even. Then

$$ \begin{align*} \sum_{k=0}^{(p^{r}-1)/d} (-1)^{k}(4k+1)(8k^{2}+4k+1) \frac{(\tfrac{1}{2})_{k}^{5}}{k!^{5}} &\equiv 0\pmod{p^{2r}}, \end{align*} $$

where $d=1$ or $2$ .

References

Andrews, G. E., ‘Problems and prospects for basic hypergeometric functions’, in Theory and Application for Basic Hypergeometric Functions, Mathematics Research Center, the University of Wisconsin–Madison, 35 (ed. Askey, R. A.) (Academic Press, New York, 1975), 191224.Google Scholar
Andrews, G. E., ‘On $q$ -analogues of the Watson and Whipple summations’, SIAM J. Math. Anal. 7 (1976), 332336.CrossRefGoogle Scholar
Gasper, G. and Rahman, M., Basic Hypergeometric Series, 2nd edn, Encyclopedia of Mathematics and Its Applications, 96 (Cambridge University Press, Cambridge, 2004).CrossRefGoogle Scholar
Guo, V. J. W., ‘Some generalizations of a supercongruence of Van Hamme’, Integral Transforms Spec. Funct. 28 (2017), 888899.CrossRefGoogle Scholar
Guo, V. J. W., ‘ A $q$ -analogue of the (A.2) supercongruence of Van Hamme for primes ${p\equiv 1 \pmod 4}$ ’, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114 (2020), Article no. 123.Google Scholar
Guo, V. J. W. and Schlosser, M. J., ‘Some $q$ -supercongruences from transformation formulas for basic hypergeometric series’, Constr. Approx. 53 (2021), 155200.10.1007/s00365-020-09524-zCrossRefGoogle Scholar
Guo, V. J. W. and Zudilin, W., ‘A $q$ -microscope for supercongruences’, Adv. Math. 346 (2019), 329358.CrossRefGoogle Scholar
Guo, V. J. W. and Zudilin, W., ‘A common $q$ -analogue of two supercongruences’, Results Math. 75 (2020), Article no. 46.CrossRefGoogle Scholar
Guo, V. J. W. and Zudilin, W., ‘A q-microscope for supercongruences’, Adv. Math. 346 (2019), 329358.CrossRefGoogle Scholar
Liu, J.-C., ‘On Van Hamme’s (A.2) and (H.2) supercongruences’, J. Math. Anal. Appl. 471 (2019), 613622.CrossRefGoogle Scholar
McCarthy, D. and Osburn, R., ‘A $p$ -adic analogue of a formula of Ramanujan’, Arch. Math. (Basel) 91 (2008), 492504.CrossRefGoogle Scholar
Robert, A. M., A Course in $p$ -Adic Analysis, Graduate Texts in Mathematics, 198 (Springer-Verlag, New York, 2000).CrossRefGoogle Scholar
Swisher, H., ‘On the supercongruence conjectures of Van Hamme’, Res. Math. Sci. 2 (2015), Article no. 18.CrossRefGoogle Scholar
Van Hamme, L., ‘Proof of a conjecture of Beukers on Apéry numbers’, in Proceedings of the Conference on $p$ -Adic Analysis, Houthalen, 1987 (eds. N. De Grande-De Kimpe and L. Van Hamme) (Vrije Universiteit Brussel, Brussels, 1986), 189195.Google Scholar
Van Hamme, L., ‘Some conjectures concerning partial sums of generalized hypergeometric series’, in $p$ -Adic Functional Analysis, Nijmegen, 1996, Lecture Notes in Pure and Applied Mathematics, 192 (eds. W. H. Schikhof, C. Perez-Garcia and J. Kakol) (Dekker, New York, 1997), 223236.Google Scholar
Wang, X. and Yue, M., ‘ A $q$ -analogue of the (A.2) supercongruence of Van Hamme for any prime $p\equiv 3 \pmod 4$ ’, Int. J. Number Theory 16 (2020), 13251335.CrossRefGoogle Scholar
Wei, C., ‘Some $q$ -supercongruences modulo the fourth power of a cyclotomic polynomia’, J. Combin. Theory Ser. A 182 (2021), Article no. 105469.Google Scholar
Wei, C., ‘Some $q$ -supercongruences modulo the fifth and sixth powers of a cyclotomic polynomial’, Preprint, 2021, arXiv:2104.07025.CrossRefGoogle Scholar
Wei, C., Gong, D. and Li, J., ‘Summation formulae for $q$ -Watson type ${}_4{\phi}_3$ -series’, Discrete Math. 313 (2013), 15891593.CrossRefGoogle Scholar