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Abstract

We give a new g-analogue of the (A.2) supercongruence of Van Hamme. Our proof employs Andrews’
multiseries generalisation of Watson’s g¢p; transformation, Andrews’ terminating g-analogue of Watson’s
3F, summation, a g-Watson-type summation due to Wei—-Gong-Li and the creative microscoping method,
developed by the author and Zudilin [‘A g-microscope for supercongruences’, Adv. Math. 346 (2019),
329-358]. As a conclusion, we confirm a weaker form of Conjecture 4.5 by the author [‘Some
generalizations of a supercongruence of van Hamme’, Integral Transforms Spec. Funct. 28 (2017),
888-899].

2020 Mathematics subject classification: primary 11B65; secondary 11A07, 33D15.

Keywords and phrases: basic hypergeometric series, g-congruence, supercongruence, creative
microscoping.

1. Introduction

India’s great mathematician Ramanujan mentioned the formula

5
2
Z( D*(4k + )(k')5 _r(§)4 (1.1)

in his second letter to Hardy on February 27, 1913. Here I'(x) stands for the Gamma
function and (a); = a(a + 1) - - - (a + k — 1) is the rising factorial. In 1997, Van Hamme
[15] observed that thirteen Ramanujan-type formulae possess neat p-adic analogues.
For instance, the formula (1.1) corresponds to the supercongruence

1)/2 —
(p=1)/ 2)5

( (mod p?) if p =1 (mod4),
Z D@k + D7

Fp(4)4 (1.2)
0 (mod p?) if p =3 (mod 4),

(tagged as (A.2) in [15]). Here and in what follows, p always denotes an odd prime
and I',(x) is Morita’s p-adic Gamma function (see, for example, [12, Ch. 7]). The
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[2] A g-supercongruence 23

supercongruence (1.2) was first confirmed by McCarthy and Osburn [11]. Swisher
[13] further proved that (1.2) is true modulo p° for p = 1 (mod 4) and p > 5. Liu [10]
extended (1.2) for p = 3 (mod 4) to a congruence modulo p*. Recently, among other
things, Wei [18] gave the following generalisation of the second case of (1.2):

" ( D _ 2 De-ne
Z (1 @k + D=2E = p? == (mod p°) for p = 3 (mod 4).
=0 k! (Dp-n2

During the past few years, there has been considerable interest in g-analogues of
supercongruences. In particular, using the creative microscoping method introduced
by the author and Zudilin [7], Wang and Yue [16], together with the author [5], gave a
g-analogue of (1.2): modulo [n]®,(¢)>,

2N40 2. 4 (qz;q4)(2”_])/4 .
(@439 ) ——m——In] ifa=1(mod4), .
(qz;qz)i(q“;q“)kq ARSI (1)
0 if n = 3 (mod 4),

M
DDk + 1]
k=0

where M = (n—1)/2 or n — 1. Wei [17, 18] further generalised (1.3) to the moduli
[n]1®,(¢)* and [n]D,(g)*.

We now need to familiarise ourselves with the standard g-notation. The
g-shifted factorial is defined by (a;q), = (1 —a)(1 —aq)---(1 —ag"™") for n > 1 and
(a; q@)o = 1. For simplicity, we also use the abbreviated notation (ay, az, ..., an,; @)y =
(ar; Pn(a2; @n - - (am; @)y for n > 0. The g-integer is [n] = [n]; = (1 —¢")/(1 = g").
The nth cyclotomic polynomial ®,(q) is given by

o= [] @-2,
1<k<n
ged(k,n)=1
where ( is a primitive nth root of unity.
Letting n = p = 1 (mod 4) and taking ¢ — 1 in (1.3), we obtain

(p=1/2 1\5 2
() (2)( 1)/4 -1/2
—DfEk + )2k = 2 =( ) d p). 1.4
;( fdk+ 1= TR T p(mod p*).  (14)

From [14, Theorem 3], we know that

( ~1/2 )zrp(}f
(p-D/4] T,

Since I',(3)* = =1 for p = 1 (mod 4), by the identity T',(;)*T',(3)* = 1, we see that
the supercongruence (1.4) is just (1.2) for p = 1 (mod 4). This implies that (1.3) for
M = (n — 1)/2 really is a g-analogue of the (A.2) supercongruence of Van Hamme.

Note that supercongruences may have different g-analogues. See [8] for such
examples. In this note, we shall give the following new g-analogue of (1.2).

(mod pz).

https://doi.org/10.1017/5S0004972722000478 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972722000478

24 V.J. W. Guo [3]

THEOREM 1.1. Let n > 1 be an odd integer. Then, modulo [n]qzd)n(qz)z,

u 2. 4\4, 4. 8
Sk 1k 1P LR
k=0 (@991 g

2q(q*: 4,14 ] 1= 1 (mod 4)
_ nl yn= mo
2N( 8- 82 g ’
A +a)a% a%), 14 (1.5)

(A +9*q* q'% %) =34
(1 + g1+ g8, 4" ¢¥)n-3)4
where M = (n—1)/2 orn — 1.

[n],,  ifn=3(mod4),

For n prime, letting ¢ — —1 in Theorem 1.1, we get (1.2). However, for n prime and
g — 1 in Theorem 1.1, we arrive at

P

d p? if p =1 (mod 4
(p-1)/2 (L3 rp(%)“ (mod p-) if p (mod 4),
Z (=1 (k+1)° k2!5k =Y D p-3ya B p-3yap
=0 - 2P arh (mod p*) if p = 3 (mod 4).

(EHEH!
(1.6)
Thus, Theorem 1.1 may be considered as a common g-analogue of (1.2) and (1.6).

Letting n be an odd prime power and ¢ — 1 in (1.3) and (1.5), we are led to the
following results. If p” = 1 (mod 4), then

(p'-1/d 155 2
() (P -D/2\" p’
_ 1)k 27k _ r+2
}; D@k + D7 _((pr_l)/4) 5o (mod p*), (1.7)
(p'=/d 1\5 2
() (" =D/2\ p
_1\k 3327k — _ r+2
; (-1} @k + 1)’ = ((p’—l)/4) 5,7 (mod pr), (1.8)

where d = 1 or 2. Since 4 + 1 + (4k + 1)* = 2(4k + 1)(8k? + 4k + 1), combining (1.7)
and (1.8), we obtain the following conclusion.

COROLLARY 1.2. If p" = 1 (mod 4), then
('-D/d 155
r (E)k

Z (—DX(dk + 1)(8K* + 4k + 1) =0 (mod p'*?), (1.9)
k=0

k5
whered =1 or 2.

Note that the author [4, Conjecture 4.5] conjectured that (1.9) is true modulo p*" for
p =1 (mod4).

We shall prove Theorem 1.1 in the next section. In Section 3, we raise two related
conjectures on supercongruences.
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2. Proof of Theorem 1.1

We first give the following g-congruence. See [6, Lemma 3.1] for a short proof.
LEMMA 2.1. Let n be a positive odd integer. Then, for 0 < k < (n—1)/2,

.2 2
aq; —-1)/2- N -
( q,9 )(n 1)/2-k = (_a)(n_l)/2—2k (aq q )k q(n 1) /4+k (]'ﬂOd (Dn(q))

(q*/a; ¥ n-1y/2-k (g*/a; q*)x

We will use a powerful transformation of Andrews (see [1, Theorem 4]), which can
be stated as follows:

(a,qx/a, —q\/a,bl,cl,...,bm,cm,q_N;q)k ( amqm+N )k
k>0 (q’\/_’ _\/L_ly (JQ/bl,(JQ/C], e ,aq/bm,aq/cm’ an+1 ; q)k blcl .. bmcm
— (aq,aq/bucm; @n Z (aq/bic1; ), - (aq/bm-1m-1;Q);, ,
(@q/bm, aq/cm; v @D (@ Dy

Lseeifm—120

« (b2,02§q)j1 : "(bmacm;q)ler"'Jrjmfl
(aq/bi,aq/ci;q)j, - (aq/bu-1,a9/Cm-1; Qjy+tj_,
(q_N; q)jl+"'+jm—l (aq)jm—2+"'+(m_2)jl qjl -1

(memC]_N/Cl; Q)j1+»-~+jm,1 (bZCZ)jl tc (bmflCmfl)]-H—m_'-jm_2 .

(2.1)
It should be pointed out that Andrews’ transformation is a multiseries generalisation
of Watson’s g¢7 transformation:

a, qa1/2, _qa1/2’ b, c, d, e q—n a2qn+2
87

a'?,  —a'®, aq/b, agjc, aq/d, agle, ag™" P Tbede

_ (aq,aq/de; @), p aq/bc, d, e, g7" 4. q
(ag/d,aqle;q), " °|aq/b, ag/c, deq"|a’ T

(see [3, Appendix (III.18)]), where the basic hypergeometric series ,.1¢, is defined as

ai,an, ..., 001 O (@1, a0, A
, 5 g, 7| = <
“¢’[b1,bz,...,br I } g @ b1, bri g

We shall also use Andrews’ terminating g-analogue of Watson’s 3F, summation
(see [2] or [3, (IL.17)]):

0 if n is odd,

;4. q} =g, PP ., (2.2)
R if n is even,
(a*q*, c*q; q*)n2

n+1

q", g™, ¢, —c
493 ag, —aq, ¢
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and the following g-Watson-type summation due to Wei et al. [19, Corollary 5]:

G GPVnr 12 @G5 G n-1)2

if n is odd,
A AT (@47 @)1 )12
473 aq, —aq, *q 7 c"(q, azqz/cz;qz)n/z o
R if n is even.
(a*q*, c*q;q°)n)2
(2.3)

We first prove the following parametric version of Theorem 1.1.
THEOREM 2.2. Let n > 1 be an odd integer. Then, modulo ®,(¢*)(1 — ag”")(a — g*"),

o Ly? aq®, ¢*1a: g g ey,

D[4k + 11,2[4k + 17°
kz_(; ( ! (aq*, ¢*/a; g(q*; g1)i(gb; Pl

1+ )1 —agh)(1 - ¢ Ja)\ @ a*)z_
(1 L+ @)1 —ag’)( ~4 /a)) 0P nle ifn=1(mod4),
(1-9U~-q" (@ 4%),_1)4 (2.4)
1+ )1 —ag®)(1 - ¢*/a)(q*, 4% ¢*)n- .
(I +q)(1 —ag”)( : qg/a)l(:I Sq 9°)(n-3)/4 [l ifn=3(mod4).
(I = )1 = ¢°)(q°, 4" ¢°)n-3)/4
PROOF. For a = g72" or a = ¢*", the left-hand side of (2.4) may be written as

(n-1)/2 2(612_2”,6]2+2n; q4)k(q2; q4)z(q4; qS)k o

(-D¥[4k + 1],2[4k + 1] q
kz_(; gl (G2, 27 (g q4)i(q8; i

Lettingm=3,qg—~q¢*,a=q¢*,bi=ci =¢°, by =c, = ¢, by = —¢*, c3 = ¢**¥" and

N = (n—-1)/21in (2.1), we see that the above summation is equal to

@ = D m-1y2

(=q*, 42" g =12
5 R A ) A Y ey My e o
(@9 (@% a9 4 4% (@ ¢4 =45 )+,
(n-1)/2
_ (_1)(n—1)/2q1—n[n]q2 Z
J2=0

J1:2>0

(q2, _q2, q2+2n, q2—2n; q4)j2 q4j2
(q49 q4’ q4’ _q4; q4)j2

(n=3)/2

+(_1)(n+1)/2q3—n[n]q2(1 +q)2 Z
j2=0

(qZ; q4)j2 (_qZ’ q2+2n, q272n; q4)j2+1 q4j2

(g% a2(d* g% —a* g

» (2.5

where we have used the fact that (¢*; ¢*);, = 0 for j; > 1.
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Taking g = ¢*,a=1,c=¢* and n — (n— 1)/2 in (2.2), we have

(q4. q8)2
(n=1)/2 —2n. - > (n-1)/4
n (q2’ _q2’q2+2n7q2 2n’q4)j2 4y n—-1_- "~ = "W=/%

(@5 4% _
‘ ( 4, 4’ 4’_ 4; 4). (n—1)/4
2=0 497000 0 if n = 3 (mod 4).

if n =1 (mod 4),

Similarly, taking ¢ = ¢*, a = ¢*, ¢ = ¢*> and n — (n — 3)/2 in (2.3), we get

(n=3)/2 2-2n.

(@54, " " g ) 4
(@*:992(q* ¢*, —q* gM)jn

Jj2=0
_ -3)/2 _
_ (1 + q2)(1 _ q2+2n)(1 _ q2 2n) (n=3)/ (QZ’_qﬁ’qéJan’q() 2n;q4)j2 40
(1-¢"*(1+q" G eh gt gt e,
BN o (R ) (U R b (AR D A
q
— (1 - q4)2(48§ qg)(zn,])m
s (LA =0 = 7 72")q", 4" 4% )34
(1 =g+ ¢ (g%, 4" ¢¥)n-3)4

if n =1 (mod 4),

if n = 3 (mod 4).

Substituting the above two identities into (2.5), we obtain

(n=1)/2 2-2n 2+2n. 4 2. MNN2¢ 4. 8
> DR+ 104k + 1]2(q4 T "14)k(q4"14)§(‘18’48)k .
=0 @ g g 0q™s 4 (@5 ¢
1+ 1-— 2+2n 1= 2-2n (q4’ q8)2n_
(1 - q)(l bl - )) B ifn = 1 (mod 4,
_ (I-g)1-q") (@5 6*) 014

(1 + @)1 = g1 = ¢* ) (g". 4" ¢ )n-3
(1 =1 = ¢®)(g? "% ¢¥)n-3)/4

[n], if n = 3 (mod 4).

This proves that both sides of (2.4) are equal when a = ¢g**". Namely, the g-congruence
(2.4) holds modulo 1 — ag*" or a — ¢*".

Moreover, in view of Lemma 2.1, we can verify that the kth and ((n — 1)/2 — k)th
summands cancel each other modulo ®,(¢?) for any positive odd integer n. It follows
that
& 2 (aq?, ¢ 1a; (a3 ¢

Z (=1)"[4k + 1] 2[4k + 1] YR VNIRRT P
=0 (aq*, q*/a; (g 49 (% )

g~ = 0 (mod ©,(¢?)).
(2.6)

Noticing that [n],» =0 (mod ®,(¢%)) for n > 1, we conclude that the g-congruence
(2.4) also holds modulo ®,(g).

Since 1 — ag*", a — ¢*" and ®,(g?) are pairwise relatively prime polynomials in g,
we complete the proof of the theorem. |
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PROOF OF THEOREM 1.1. It is easy to see that the denominators on both sides of
(2.4) when a = 1 are relatively prime to ®,(¢?). However, when a = 1, the polynomial
(1 — ag”)(a — ¢*") contains the factor ®,(4?)>. Therefore, the a = 1 case of (2.4)
implies that (1.5) is true modulo ®,(¢%)* for M = (n — 1)/2. Furthermore, since
(@ g ¢/ (g% gME G %)) = 0 (mod @,(¢7)°) for (n—1)/2 <k <n-—1, we
see that (1.5) is also true modulo ®,(¢?)? for M = n — 1.

It remains to prove the following two g-congruences:

(n=1)/2 2. 4\4. 4. 8
@5a9),q g _
—DF[dk + 1] 2[4k + 1]P— 2222 7572 = 0 (mod [n],»), 2.7
,;; b ! A WHOAD) (mod [l @D
n—1 2. MANdo 4. 8
@ a9,q g _
— D[4k + 1] 2[4k + 12252 "= = =%k = 0 (mod [n],»). 2.8
;< Fk ek o (mod [n]z).  (2.8)

For n > 1, let { # 1 be an nth root of unity, possibly not primitive. Suppose ¢ is a
primitive root of unity of odd degree d satisfying d | n. Let c,(k) be the kth term on the

left-hand side of the congruences (2.7) and (2.8). Then
@ aig

co(k) = (=DF[4k + 1] 2[4k + 11— — 472,
! e (% qH}(a®: ¢

Observe that (2.6) is true for any odd n > 1. Thus, letting a = 1 and n = d in (2.6), we

obtain
d-1n/2 d-1 d-1)/2 —1
D)= cl)=0 and > c (k)= cl)=
k=0 k=0 k=0 k=0
Noticing that
clld+h) | cq(td+h) )
c(td) ~ g=0 cy(ld)
we have
n—1 n/d—1 d-1 d-1
k)= Y edtd+k)= Z ce(bd) Y cxk) =0
k=0 (=0 k=0 = k=0
and
(n-1)/2 (n/d=3)/2 d-1 (d-1)/2
Deky= Y cdtd) Y i)+ D cdlin-d)/2+k) =0
k=0 =0 k=0 k=0

This means that both the sums Y7) ¢ (k) and X" "% ¢, (k) are divisible by ®u(q).
Similarly, we can show that they are also d1v131ble by ®,(—¢). Since d can be any
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divisor of n larger than 1, we deduce that each of them is congruent to 0 modulo
[] @a@®u-q) = 11,
dln,d>1
thus establishing (2.7) and (2.8). m

3. Two open problems

Swisher [13] proposed many interesting conjectures on generalisations of Van
Hamme’s supercongruences (A.2)—(L.2). Recently, the author and Zudilin [9] have
proved some conjectures of Swisher by establishing their g-analogues. Here we would
like to propose a similar conjecture.

CONJECTURE 3.1. Let p = 1 (mod 4) and let r, s > 1. Then

(p'-1)/d (%)2 (p'-/d (%)2
1V 25+1 _ 114 REY: 25+1 3r-2
kzz(; (=1 dk+ P2 = —pLy(p) kz(; (= (dk+ 1>+ =2 (mod p*r2),

(3.1
where d = 1 or 2.

For s = 0, Swisher [13, (A.3)] and the author [5, Conjecture 4.1] conjectured that
(3.1) holds modulo p°" for p > 5. From (1.8), we can easily see that (3.1) is true modulo
p fors=1.

Finally, motivated by [4, Conjecture 4.5], we believe that the following generalisa-
tion of Corollary 1.2 for p of the form 4k + 3 should be true.

CONJECTURE 3.2. Let p = 3 (mod 4) and let » > 2 be even. Then

(p'-D/d (1)5
Z (—DF(dk + 1)(8K* + 4k + 1);—‘; = 0 (mod p*),
k=0 '

where d = 1 or 2.
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