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Abstract

We give a new q-analogue of the (A.2) supercongruence of Van Hamme. Our proof employs Andrews’
multiseries generalisation of Watson’s 8φ7 transformation, Andrews’ terminating q-analogue of Watson’s
3F2 summation, a q-Watson-type summation due to Wei–Gong–Li and the creative microscoping method,
developed by the author and Zudilin [‘A q-microscope for supercongruences’, Adv. Math. 346 (2019),
329–358]. As a conclusion, we confirm a weaker form of Conjecture 4.5 by the author [‘Some
generalizations of a supercongruence of van Hamme’, Integral Transforms Spec. Funct. 28 (2017),
888–899].

2020 Mathematics subject classification: primary 11B65; secondary 11A07, 33D15.

Keywords and phrases: basic hypergeometric series, q-congruence, supercongruence, creative
microscoping.

1. Introduction

India’s great mathematician Ramanujan mentioned the formula
∞∑

k=0

(−1)k(4k + 1)
( 1

2 )5
k

k!5 =
2
Γ( 3

4 )4
(1.1)

in his second letter to Hardy on February 27, 1913. Here Γ(x) stands for the Gamma
function and (a)k = a(a + 1) · · · (a + k − 1) is the rising factorial. In 1997, Van Hamme
[15] observed that thirteen Ramanujan-type formulae possess neat p-adic analogues.
For instance, the formula (1.1) corresponds to the supercongruence

(p−1)/2∑
k=0

(−1)k(4k + 1)
( 1

2 )5
k

k!5 ≡

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− p

Γp( 3
4 )4

(mod p3) if p ≡ 1 (mod 4),

0 (mod p3) if p ≡ 3 (mod 4),
(1.2)

(tagged as (A.2) in [15]). Here and in what follows, p always denotes an odd prime
and Γp(x) is Morita’s p-adic Gamma function (see, for example, [12, Ch. 7]). The
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supercongruence (1.2) was first confirmed by McCarthy and Osburn [11]. Swisher
[13] further proved that (1.2) is true modulo p5 for p ≡ 1 (mod 4) and p > 5. Liu [10]
extended (1.2) for p ≡ 3 (mod 4) to a congruence modulo p4. Recently, among other
things, Wei [18] gave the following generalisation of the second case of (1.2):

(p−1)/2∑
k=0

(−1)k(4k + 1)
( 1

2 )5
k

k!5 ≡ p2 ( 3
4 )(p−1)/2

( 5
4 )(p−1)/2

(mod p5) for p ≡ 3 (mod 4).

During the past few years, there has been considerable interest in q-analogues of
supercongruences. In particular, using the creative microscoping method introduced
by the author and Zudilin [7], Wang and Yue [16], together with the author [5], gave a
q-analogue of (1.2): modulo [n]Φn(q)2,

M∑
k=0

(−1)k[4k + 1]
(q; q2)4

k(q2; q4)k

(q2; q2)4
k(q4; q4)k

qk ≡

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(q2; q4)2

(n−1)/4

(q4; q4)2
(n−1)/4

[n] if n ≡ 1 (mod 4),

0 if n ≡ 3 (mod 4),

(1.3)

where M = (n − 1)/2 or n − 1. Wei [17, 18] further generalised (1.3) to the moduli
[n]Φn(q)3 and [n]Φn(q)4.

We now need to familiarise ourselves with the standard q-notation. The
q-shifted factorial is defined by (a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1) for n � 1 and
(a; q)0 = 1. For simplicity, we also use the abbreviated notation (a1, a2, . . . , am; q)n =

(a1; q)n(a2; q)n · · · (am; q)n for n � 0. The q-integer is [n] = [n]q = (1 − qn)/(1 − qn).
The nth cyclotomic polynomial Φn(q) is given by

Φn(q) =
∏

1�k�n
gcd(k,n)=1

(q − ζk),

where ζ is a primitive nth root of unity.
Letting n = p ≡ 1 (mod 4) and taking q→ 1 in (1.3), we obtain

(p−1)/2∑
k=0

(−1)k(4k + 1)
( 1

2 )5
k

k!5 ≡
( 1

2 )2
(p−1)/4

(1)2
(p−1)/4

p =

(
−1/2

(p − 1)/4

)2

p (mod p3). (1.4)

From [14, Theorem 3], we know that
(
−1/2

(p − 1)/4

)
≡
Γp( 1

4 )2

Γp( 1
2 )

(mod p2).

Since Γp( 1
2 )2 = −1 for p ≡ 1 (mod 4), by the identity Γp( 1

4 )4Γp( 3
4 )4 = 1, we see that

the supercongruence (1.4) is just (1.2) for p ≡ 1 (mod 4). This implies that (1.3) for
M = (n − 1)/2 really is a q-analogue of the (A.2) supercongruence of Van Hamme.

Note that supercongruences may have different q-analogues. See [8] for such
examples. In this note, we shall give the following new q-analogue of (1.2).
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THEOREM 1.1. Let n > 1 be an odd integer. Then, modulo [n]q2Φn(q2)2,

M∑
k=0

(−1)k[4k + 1]q2 [4k + 1]2 (q2; q4)4
k(q4; q8)k

(q4; q4)4
k(q8; q8)k

q−2k

≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
2q(q4; q8)2

(n−1)/4

(1 + q2)(q8; q8)2
(n−1)/4

[n]q2 if n ≡ 1 (mod 4),

(1 + q)2(q4, q12; q8)(n−3)/4

(1 + q2)(1 + q4)(q8, q16; q8)(n−3)/4
[n]q2 if n ≡ 3 (mod 4),

(1.5)

where M = (n − 1)/2 or n − 1.

For n prime, letting q→ −1 in Theorem 1.1, we get (1.2). However, for n prime and
q→ 1 in Theorem 1.1, we arrive at

(p−1)/2∑
k=0

(−1)k(4k + 1)3 ( 1
2 )5

k

k!5 ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

p

Γp( 3
4 )4

(mod p3) if p ≡ 1 (mod 4),

( 1
2 )(p−3)/4( 3

2 )(p−3)/4 p

( p−3
4 )! ( p+1

4 )!
(mod p3) if p ≡ 3 (mod 4).

(1.6)

Thus, Theorem 1.1 may be considered as a common q-analogue of (1.2) and (1.6).
Letting n be an odd prime power and q→ 1 in (1.3) and (1.5), we are led to the

following results. If pr ≡ 1 (mod 4), then
(pr−1)/d∑

k=0

(−1)k(4k + 1)
( 1

2 )5
k

k!5 ≡
(
(pr − 1)/2
(pr − 1)/4

)2 pr

2pr−1 (mod pr+2), (1.7)

(pr−1)/d∑
k=0

(−1)k(4k + 1)3 ( 1
2 )5

k

k!5 ≡ −
(
(pr − 1)/2
(pr − 1)/4

)2 pr

2pr−1 (mod pr+2), (1.8)

where d = 1 or 2. Since 4 + 1 + (4k + 1)3 = 2(4k + 1)(8k2 + 4k + 1), combining (1.7)
and (1.8), we obtain the following conclusion.

COROLLARY 1.2. If pr ≡ 1 (mod 4), then
(pr−1)/d∑

k=0

(−1)k(4k + 1)(8k2 + 4k + 1)
( 1

2 )5
k

k!5 ≡ 0 (mod pr+2), (1.9)

where d = 1 or 2.

Note that the author [4, Conjecture 4.5] conjectured that (1.9) is true modulo p3r for
p ≡ 1 (mod 4).

We shall prove Theorem 1.1 in the next section. In Section 3, we raise two related
conjectures on supercongruences.
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2. Proof of Theorem 1.1

We first give the following q-congruence. See [6, Lemma 3.1] for a short proof.

LEMMA 2.1. Let n be a positive odd integer. Then, for 0 � k � (n − 1)/2,

(aq; q2)(n−1)/2−k

(q2/a; q2)(n−1)/2−k
≡ (−a)(n−1)/2−2k (aq; q2)k

(q2/a; q2)k
q(n−1)2/4+k (mod Φn(q)).

We will use a powerful transformation of Andrews (see [1, Theorem 4]), which can
be stated as follows:

∑
k�0

(a, q
√

a,−q
√

a, b1, c1, . . . , bm, cm, q−N ; q)k

(q,
√

a,−
√

a, aq/b1, aq/c1, . . . , aq/bm, aq/cm, aqN+1; q)k

( amqm+N

b1c1 · · · bmcm

)k

=
(aq, aq/bmcm; q)N

(aq/bm, aq/cm; q)N

∑
j1,...,jm−1�0

(aq/b1c1; q)j1 · · · (aq/bm−1cm−1; q)jm−1

(q; q)j1 · · · (q; q)jm−1

×
(b2, c2; q)j1 · · · (bm, cm; q)j1+···+jm−1

(aq/b1, aq/c1; q)j1 · · · (aq/bm−1, aq/cm−1; q)j1+···+jm−1

×
(q−N ; q)j1+···+jm−1

(bmcmq−N/a; q)j1+···+jm−1

(aq) jm−2+···+(m−2)j1 qj1+···+jm−1

(b2c2) j1 · · · (bm−1cm−1)j1+···+jm−2
. (2.1)

It should be pointed out that Andrews’ transformation is a multiseries generalisation
of Watson’s 8φ7 transformation:

8φ7

[
a, qa1/2, −qa1/2, b, c, d, e, q−n

a1/2, −a1/2, aq/b, aq/c, aq/d, aq/e, aqn+1; q,
a2qn+2

bcde

]

=
(aq, aq/de; q)n

(aq/d, aq/e; q)n
4φ3

[
aq/bc, d, e, q−n

aq/b, aq/c, deq−n/a; q, q
]

(see [3, Appendix (III.18)]), where the basic hypergeometric series r+1φr is defined as

r+1φr

[
a1, a2, . . . , ar+1
b1, b2, . . . , br

; q, z
]
=

∞∑
k=0

(a1, a2, . . . , ar+1; q)k

(q, b1, . . . , br; q)k
zk.

We shall also use Andrews’ terminating q-analogue of Watson’s 3F2 summation
(see [2] or [3, (II.17)]):

4φ3

[
q−n, a2qn+1, c, −c

aq, −aq, c2 ; q, q
]
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if n is odd,
cn(q, a2q2/c2; q2)n/2

(a2q2, c2q; q2)n/2
if n is even,

(2.2)
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and the following q-Watson-type summation due to Wei et al. [19, Corollary 5]:

4φ3

[q−n, a2qn+1, c, −cq
aq, −aq, c2q ; q, q

]
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

cn(q; q2)(n+1)/2(a2q2/c2; q2)(n−1)/2

(a2q2; q2)(n−1)/2(c2q; q2)(n+1)/2
if n is odd,

cn(q, a2q2/c2; q2)n/2

(a2q2, c2q; q2)n/2
if n is even.

(2.3)

We first prove the following parametric version of Theorem 1.1.

THEOREM 2.2. Let n > 1 be an odd integer. Then, modulo Φn(q2)(1 − aq2n)(a − q2n),

(n−1)/2∑
k=0

(−1)k[4k + 1]q2 [4k + 1]2 (aq2, q2/a; q4)k(q2; q4)2
k(q4; q8)k

(aq4, q4/a; q4)k(q4; q4)2
k(q8; q8)k

q−2k

≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − (1 + q)(1 − aq2)(1 − q2/a)

(1 − q)(1 − q4)

) (q4; q8)2
(n−1)/4

(q8; q8)2
(n−1)/4

[n]q2 if n ≡ 1 (mod 4),

(1 + q)(1 − aq2)(1 − q2/a)(q4, q12; q8)(n−3)/4

(1 − q)(1 − q8)(q8, q16; q8)(n−3)/4
[n]q2 if n ≡ 3 (mod 4).

(2.4)

PROOF. For a = q−2n or a = q2n, the left-hand side of (2.4) may be written as

(n−1)/2∑
k=0

(−1)k[4k + 1]q2 [4k + 1]2 (q2−2n, q2+2n; q4)k(q2; q4)2
k(q4; q8)k

(q4−2n, q4+2n; q4)k(q4; q4)2
k(q8; q8)k

q−2k.

Letting m = 3, q �→ q4, a = q2, b1 = c1 = q5, b2 = c2 = q2, b3 = −q2, c3 = q2+2n and
N = (n − 1)/2 in (2.1), we see that the above summation is equal to

(q6,−q2−2n; q4)(n−1)/2

(−q4, q4−2n; q4)(n−1)/2

×
∑

j1,j2�0

(q−4; q4)j1 (q2; q4)j2 (q2, q2; q4)j1 (−q2, q2+2n, q2−2n; q4)j1+j2

(q4; q4)j1 (q4; q4)j2 (q, q; q4)j1 (q4, q4,−q4; q4)j1+j2
q6j1+4j2

= (−1)(n−1)/2q1−n[n]q2

(n−1)/2∑
j2=0

(q2,−q2, q2+2n, q2−2n; q4)j2

(q4, q4, q4,−q4; q4)j2
q4j2

+ (−1)(n+1)/2q3−n[n]q2 (1 + q)2
(n−3)/2∑

j2=0

(q2; q4)j2 (−q2, q2+2n, q2−2n; q4)j2+1

(q4; q4)j2(q4, q4,−q4; q4)j2+1
q4j2 , (2.5)

where we have used the fact that (q−4; q4)j1 = 0 for j1 > 1.
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Taking q �→ q4, a = 1, c = q2 and n �→ (n − 1)/2 in (2.2), we have

(n−1)/2∑
j2=0

(q2,−q2, q2+2n, q2−2n; q4)j2

(q4, q4, q4,−q4; q4)j2
q4j2 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
qn−1

(q4; q8)2
(n−1)/4

(q8; q8)2
(n−1)/4

if n ≡ 1 (mod 4),

0 if n ≡ 3 (mod 4).

Similarly, taking q �→ q4, a = q4, c = q2 and n �→ (n − 3)/2 in (2.3), we get

(n−3)/2∑
j2=0

(q2; q4)j2 (−q2, q2+2n, q2−2n; q4)j2+1

(q4; q4)j2(q4, q4,−q4; q4)j2+1
q4j2

=
(1 + q2)(1 − q2+2n)(1 − q2−2n)

(1 − q4)2(1 + q4)

(n−3)/2∑
j2=0

(q2,−q6, q6+2n, q6−2n; q4)j2

(q4, q8, q8,−q8; q4)j2
q4j2

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

qn−3
(1 + q2)(1 − q2+2n)(1 − q2−2n)(q4; q8)2

(n−1)/4

(1 − q4)2(q8; q8)2
(n−1)/4

if n ≡ 1 (mod 4),

qn−3 (1 + q2)(1 − q2+2n)(1 − q2−2n)(q4, q12; q8)(n−3)/4

(1 − q4)2(1 + q4)(q8, q16; q8)(n−3)/4
if n ≡ 3 (mod 4).

Substituting the above two identities into (2.5), we obtain

(n−1)/2∑
k=0

(−1)k[4k + 1]q2 [4k + 1]2 (q2−2n, q2+2n; q4)k(q2; q4)2
k(q4; q8)k

(q4−2n, q4+2n; q4)k(q4; q4)2
k(q8; q8)k

q−2k

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − (1 + q)(1 − q2+2n)(1 − q2−2n)

(1 − q)(1 − q4)

) (q4; q8)2
(n−1)/4

(q8; q8)2
(n−1)/4

[n]q2 if n ≡ 1 (mod 4),

(1 + q)(1 − q2+2n)(1 − q2−2n)(q4, q12; q8)(n−3)/4

(1 − q)(1 − q8)(q8, q16; q8)(n−3)/4
[n]q2 if n ≡ 3 (mod 4).

This proves that both sides of (2.4) are equal when a = q±2n. Namely, the q-congruence
(2.4) holds modulo 1 − aq2n or a − q2n.

Moreover, in view of Lemma 2.1, we can verify that the kth and ((n − 1)/2 − k)th
summands cancel each other modulo Φn(q2) for any positive odd integer n. It follows
that
(n−1)/2∑

k=0

(−1)k[4k + 1]q2 [4k + 1]2 (aq2, q2/a; q4)k(q2; q4)2
k(q4; q8)k

(aq4, q4/a; q4)k(q4; q4)2
k(q8; q8)k

q−2k ≡ 0 (mod Φn(q2)).

(2.6)

Noticing that [n]q2 ≡ 0 (mod Φn(q2)) for n > 1, we conclude that the q-congruence
(2.4) also holds modulo Φn(q).

Since 1 − aq2n, a − q2n and Φn(q2) are pairwise relatively prime polynomials in q,
we complete the proof of the theorem. �
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PROOF OF THEOREM 1.1. It is easy to see that the denominators on both sides of
(2.4) when a = 1 are relatively prime to Φn(q2). However, when a = 1, the polynomial
(1 − aq2n)(a − q2n) contains the factor Φn(q2)2. Therefore, the a = 1 case of (2.4)
implies that (1.5) is true modulo Φn(q2)3 for M = (n − 1)/2. Furthermore, since
(q2; q4)4

k(q4; q8)k/((q4; q4)4
k(q8; q8)k) ≡ 0 (mod Φn(q2)5) for (n − 1)/2 < k � n − 1, we

see that (1.5) is also true modulo Φn(q2)3 for M = n − 1.
It remains to prove the following two q-congruences:

(n−1)/2∑
k=0

(−1)k[4k + 1]q2 [4k + 1]2 (q2; q4)4
k(q4; q8)k

(q4; q4)4
k(q8; q8)k

q−2k ≡ 0 (mod [n]q2 ), (2.7)

n−1∑
k=0

(−1)k[4k + 1]q2 [4k + 1]2 (q2; q4)4
k(q4; q8)k

(q4; q4)4
k(q8; q8)k

q−2k ≡ 0 (mod [n]q2 ). (2.8)

For n > 1, let ζ � 1 be an nth root of unity, possibly not primitive. Suppose ζ is a
primitive root of unity of odd degree d satisfying d | n. Let cq(k) be the kth term on the
left-hand side of the congruences (2.7) and (2.8). Then

cq(k) = (−1)k[4k + 1]q2 [4k + 1]2 (q2; q4)4
k(q4; q8)k

(q4; q4)4
k(q8; q8)k

q−2k.

Observe that (2.6) is true for any odd n > 1. Thus, letting a = 1 and n = d in (2.6), we
obtain

(d−1)/2∑
k=0

cζ(k) =
d−1∑
k=0

cζ(k) = 0 and
(d−1)/2∑

k=0

c−ζ(k) =
d−1∑
k=0

c−ζ(k) = 0.

Noticing that

cζ(�d + k)
cζ(�d)

= lim
q→ζ

cq(�d + k)
cq(�d)

= cζ(k),

we have

n−1∑
k=0

cζ(k) =
n/d−1∑
�=0

d−1∑
k=0

cζ(�d + k) =
n/d−1∑
�=0

cζ(�d)
d−1∑
k=0

cζ(k) = 0,

and
(n−1)/2∑

k=0

cζ(k) =
(n/d−3)/2∑
�=0

cζ(�d)
d−1∑
k=0

cζ(k) +
(d−1)/2∑

k=0

cζ((n − d)/2 + k) = 0.

This means that both the sums
∑n−1

k=0 cq(k) and
∑(n−1)/2

k=0 cq(k) are divisible by Φd(q).
Similarly, we can show that they are also divisible by Φd(−q). Since d can be any
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divisor of n larger than 1, we deduce that each of them is congruent to 0 modulo∏
d|n, d>1

Φd(q)Φd(−q) = [n]q2 ,

thus establishing (2.7) and (2.8). �

3. Two open problems

Swisher [13] proposed many interesting conjectures on generalisations of Van
Hamme’s supercongruences (A.2)–(L.2). Recently, the author and Zudilin [9] have
proved some conjectures of Swisher by establishing their q-analogues. Here we would
like to propose a similar conjecture.

CONJECTURE 3.1. Let p ≡ 1 (mod 4) and let r, s � 1. Then

(pr−1)/d∑
k=0

(−1)k(4k + 1)2s+1 ( 1
2 )5

k

k!5 ≡ −pΓp( 1
4 )4

(pr−1−1)/d∑
k=0

(−1)k(4k + 1)2s+1 ( 1
2 )5

k

k!5 (mod p3r−2),

(3.1)

where d = 1 or 2.

For s = 0, Swisher [13, (A.3)] and the author [5, Conjecture 4.1] conjectured that
(3.1) holds modulo p5r for p > 5. From (1.8), we can easily see that (3.1) is true modulo
pr for s = 1.

Finally, motivated by [4, Conjecture 4.5], we believe that the following generalisa-
tion of Corollary 1.2 for p of the form 4k + 3 should be true.

CONJECTURE 3.2. Let p ≡ 3 (mod 4) and let r � 2 be even. Then
(pr−1)/d∑

k=0

(−1)k(4k + 1)(8k2 + 4k + 1)
( 1

2 )5
k

k!5 ≡ 0 (mod p2r),

where d = 1 or 2.
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