We present mean spectral parameters for various ensembles of quasars observed with the Einstein Observatory Imaging Proportional Counter (IPC). Our sample contains 71 optically or radio selected quasars with 0.1 < z < 3.5, Galactic NH < 1021 cm−2, total counts of 30 −500, and IPC gain < 19. Quasars are grouped into ensembles according to radio properties (Flat Radio Spectrum [FRS], Steep Radio Spectrum [SRS] or Radio Quiet [RQ]), and either redshift or X-ray luminosity, lx. We find a clear correlation between radio properties and α. FRS quasars have α∼0.4, SRS quasars have α∼0.7 and RQ quasars have α ∼1–1.4. There is no evidence for a dependence of α on z nor, for the FRS and SRS ensembles, on lx over nearly three decades. FRS quasars with 2.0 < z < 3.5 have just as flat mean spectra as those with low z, implying that a single power law, which is flatter than the canonical one with α ∼ 0.65, continues into the 1–10 keV band (in which the observed softer X-rays were emitted). Unfortunately, the results for high redshift and high lx RQ quasars are ambiguous because of systematic uncertainties in the ensemble means. Thus we cannot test the two-component spectral hypothesis of Wilkes and Elvis for these objects. SRS X-ray spectra could be steeper than FRS spectra because of the mixing of two components, although a single intrinsically steeper spectrum is easier to reconcile with the absence of z dependence. The uncertainty in a for RQ quasars with high z leaves open the important question of their contribution to the cosmic X-ray background.