Winds from massive stars and supernovae in starburst galaxies drive global outflows of hot X-ray emitting plasma, as seen in M82 and NGC 253. These galactic winds are important for understanding galaxy evolution & formation, chemical enrichment of the IGM, and the starburst phenomenon itself.
X-ray observations provide the only direct probe of the hot gas in these winds. However, the limitations of current X-ray observatories and factors such as complex temperature structure, mass loading by ambient material and projection effects all make the link between the observed data and existing 1 & 2-D modeling and theory difficult to make.
We have therefore begun a program of numerical simulations of galactic winds, concentrating on predicting their observable X-ray properties. We present some initial results, comparing them to the archetypal starburst wind system M82.