Neural predictors underlying variability in depression outcomes are poorly understood. Functional MRI measures of subgenual cortex connectivity, self-blaming and negative perceptual biases have shown prognostic potential in treatment-naïve, medication-free and fully remitting forms of major depressive disorder (MDD). However, their role in more chronic, difficult-to-treat forms of MDD is unknown.
Forty-five participants (n = 38 meeting minimum data quality thresholds) fulfilled criteria for difficult-to-treat MDD. Clinical outcome was determined by computing percentage change at follow-up from baseline (four months) on the self-reported Quick Inventory of Depressive Symptomatology (16-item). Baseline measures included self-blame-selective connectivity of the right superior anterior temporal lobe with an a priori Brodmann Area 25 region-of-interest, blood-oxygen-level-dependent a priori bilateral amygdala activation for subliminal sad vs happy faces, and resting-state connectivity of the subgenual cortex with an a priori defined ventrolateral prefrontal cortex/insula region-of-interest.
A linear regression model showed that baseline severity of depressive symptoms explained 3% of the variance in outcomes at follow-up (F[3,34] = .33, p = .81). In contrast, our three pre-registered neural measures combined, explained 32% of the variance in clinical outcomes (F[4,33] = 3.86, p = .01).
These findings corroborate the pathophysiological relevance of neural signatures of emotional biases and their potential as predictors of outcomes in difficult-to-treat depression.