Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T07:49:43.707Z Has data issue: false hasContentIssue false

On the Structural Diversity of Sialoliths

Published online by Cambridge University Press:  28 September 2007

António P. Alves de Matos
Affiliation:
Department of Biomaterials/ITB, Dental Medical School, University of Lisbon, 1649-003 Lisbon, Portugal Anatomic Pathology Department, Curry Cabral Hospital, R. da Beneficência 8, 1069-166 Lisbon, Portugal
Patrícia A. Carvalho
Affiliation:
Department of Materials Engineering, Technical University of Lisbon, 1049-001 Lisbon, Portugal
Arlindo Almeida
Affiliation:
Department of Biomaterials/ITB, Dental Medical School, University of Lisbon, 1649-003 Lisbon, Portugal
Luís Duarte
Affiliation:
Maxilo-Facial Cirurgy Service, S. José Hospital, 1150-199 Lisbon, Portugal
Rui Vilar
Affiliation:
Department of Materials Engineering, Technical University of Lisbon, 1049-001 Lisbon, Portugal
Jorge Leitão
Affiliation:
Department of Biomaterials/ITB, Dental Medical School, University of Lisbon, 1649-003 Lisbon, Portugal
Get access

Abstract

Sialoliths from parotid and submaxillar glands have been characterized. Fractured and polished surfaces revealed an intrinsic structural diversity across the calculi sections. In general, the calculi presented highly mineralized amorphous-looking cores surrounded by concentric alternating mineralized and organic layers. The thickness of these layers decreased from the outer regions toward the center of the sialolith, illustrating a sequence of growth stages. Nevertheless, a significant variability could be detected among the specimens. In some cases, the calculi displayed multiple cores and lacked concentric laminated structures. In other instances, the specimens exhibited extensive regions of globular structures. In these cases, the globule diameter decreased across the radius toward the center of the sialoliths, and the globular structures tended to reorganize, forming bright and dark laminated layers surrounding the core. The participation of globular structures in the layer formation process points to morphogenetic mechanisms not previously described.

Type
BIOLOGICAL APPLICATIONS
Copyright
© 2007 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anneroth, G., Eneroth, C.M. & Isacsson, G. (1975). Crystalline structure of salivary calculi. A microradiographic and microdiffractometric study. J Oral Pathol 4, 266272.Google Scholar
Anneroth, G., Eneroth, C.M. & Isacsson, G. (1977). The relation of lipids to the mineral components in salivary calculi. J Oral Pathol 6, 373381.Google Scholar
Anneroth, G., Eneroth, C.M., Isacsson, G. & Lundquist, P.G. (1978). Ultrastructure of salivary calculi. Scand J Dent Res 86, 182192.Google Scholar
Cheng, P.T., Pritzker, K.P., Richards, J. & Holmyard, D. (1987). Fictitious calculi and human calculi with foreign nuclei. Scanning Microsc 1, 20252032.Google Scholar
Faure, J., Vignoles, M., Bonel, G. & Lodter, J.P. (1986). Microanalysis of salivary calculi. J Biol Buccale 14, 195205.Google Scholar
Grases, F., Santiago, C., Simonet, B.M. & Costa-Bauza, A. (2003). Sialolithiasis: Mechanism of calculi formation and etiologic factors. Clin Chim Acta 334, 131136.Google Scholar
Harrison, J.D., Epivatianos, A. & Bhatia, S.N. (1997). Role of microliths in the aetiology of chronic submandibular sialadenitis: A clinicopathological investigation of 154 cases. Histopathology 31, 237351.Google Scholar
Isacsson, G. & Friskopp, J. (1984). The morphology of salivary calculi. A scanning electron microscopic study. Acta Odontol Scand 42, 6572.Google Scholar
Kasaboglu, O., Er, N., Tumer, C. & Akkocaoglu, M. (2004). Micromorphology of sialoliths in submandibular salivary gland: A scanning electron microscope and X-ray diffraction analysis. J Oral Maxillofac Surg 62, 12531258.Google Scholar
Lustmann, J., Regev, E. & Melamed, Y. (1990). A survey on 245 patients and a review of the literature. Int J Oral Maxillofac Surg 19, 135138.Google Scholar
Lustmann, J. & Shteyer, A. (1981). Salivary calculi: Ultrastructural morphology and bacterial etiology. J Dent Res 60, 13861395.Google Scholar
Middleton, J.D. (1965). Human salivary proteins and artificial calculus formation in vitro. Arch Oral Biol 10, 227235.Google Scholar
Mishima, H., Yamamoto, H. & Sakae, T. (1992). Scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction analyses of human salivary stones. Scanning Microsc 6, 487494.Google Scholar
Raveenthiran, V. & Hayavadana Rao, P.V. (2004). Giant calculus in the submandibular salivary duct: Report of the first prepubertal patient. Pediatr Surg Int 20, 163164Google Scholar
Riesco, J.M., Juanes, J.A., Diaz-Gonzalez, M.P., Blanco, E.J., Riesco-Lopez, J.M. & Vazquez, R. (1999). Crystalloid architecture of a sialolith in a minor salivary gland. J Oral Pathol Med 28, 451455.Google Scholar
Rodgers, A.L. (1983). Common ultrastructural features in human calculi. Micron Microsc Acta 14, 219224.Google Scholar
Ryall, R.L. (1996). Glycosaminoglycans, proteins, and stone formation: Adult themes and child's play. Pediatr Nephrol 10, 656666.Google Scholar
Takeda, Y. (1986). Crystalloids with calcareous deposition in the parotid gland: One of the possible causes of development of salivary calculi. J Oral Pathol 15, 459461.Google Scholar
Takeda, Y. & Ishikawa, G. (1983). Crystalloids in salivary duct cysts of the human parotid gland. Scanning electron microscopical study with electron probe X-ray microanalysis. Virchows Arch A Pathol Anat Histopathol 399, 4148.Google Scholar
Takeda, Y., Oikawa, Y., Satoh, M. & Nakamura, S. (2003). Sialolith of the submandibular gland with bone formation. Pathol Int 53, 309312.Google Scholar
Takeshita, H., Ishihara, A., Yamashita, T., Itoh, A., Yoshida, K. & Fukaya, M. (1990). A case of a salivary calculus containing a limb of a shrimp—The structural analysis. Aichi Gakuin Dent Sci 3, 4958.Google Scholar
Tanaka, N., Ichinose, S., Adachi, Y., Mimura, M. & Kimijima, Y. (2003). Ultrastructural analysis of salivary calculus in combination with X-ray microanalysis. Med Electron Microsc 36, 120126.Google Scholar
Tandler, B. (1965). Electron microscopical observations on early sialoliths in a human submaxiliary gland. Arch Oral Biol 10, 509522.Google Scholar
Teymoortash, A., Ramaswamy, A. & Werner, J.A. (2003). Is there evidence of a sphincter system in Wharton's duct? Etiological factors related to sialolith formation. J Oral Sci 45, 233235.Google Scholar
Teymoortash, A., Wollstein, A.C., Lippert, B.M., Peldszus, R. & Werner, J.Á. (2002). Bacteria and pathogenesis of human salivary calculus. Acta Otolaryngol 122, 210214.Google Scholar
Tohda, H., Yamakura, K. & Yanagisawa, T. (1995). High-resolution electron microscopic study of salivary calculus. J Electron Microsc (Tokyo) 44, 399404.Google Scholar
Westhofen, M., Schafer, H. & Seifert, G. (1984). Calcium redistribution, calcification and stone formation in the parotid gland during experimental stimulation and hypercalcaemia. Cytochemical and X-ray microanalytical investigations. Virchows Arch A Pathol Anat Histopathol 402, 42538.Google Scholar
Yamamoto, H., Sakae, T., Takagi, M. & Otake, S. (1984). Scanning electron microscopic and X-ray microdiffractometeric studies on sialolith-crystals in human submandibular glands. Acta Pathol Jpn 34, 4753.Google Scholar
Yamamoto, H., Sakae, T., Takagi, M., Otake, S. & Hirai, G. (1983). Weddellite in submandibular gland calculus. J Dental Res 62, 1619.Google Scholar