Article contents
On the Consistency of QCBED Structure Factor Measurements for TiO2 (Rutile)
Published online by Cambridge University Press: 16 September 2003
Abstract
The same Bragg reflection in TiO2 from 12 different (CBED) patterns (from different crystals, orientations, and thicknesses) are analyzed quantitatively to evaluate the consistency of the quantitative CBED method for bond-charge mapping. The standard deviation in the resulting distribution of derived X-ray structure factors is found to be an order of magnitude smaller than that in conventional X-ray work, and the standard error (0.026% for FX(110)) is slightly better than obtained by the X-ray Pendellösung method applied to silicon. This is sufficiently accurate to distinguish between atomic, covalent, and ionic models of bonding. We describe the importance of extracting experimental parameters from CCD camera characterization, and of surface oxidation and crystal shape. The current experiments show that the QCBED method is now a robust and powerful tool for low-order structure factor measurement, which does not suffer from the large extinction (multiple scattering) errors that occur in inorganic X-ray crystallography, and may be applied to nanocrystals. Our results will be used to understand the role of d-electrons in the chemical bonding of TiO2.
- Type
- Research Article
- Information
- Copyright
- © 2003 Microscopy Society of America
- 12
- Cited by