Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-15T07:29:56.593Z Has data issue: false hasContentIssue false

Measurement of Lattice Displacements at Planar Defects in 2H and 18R Martensites

Published online by Cambridge University Press:  17 March 2004

Adriana María Condó
Affiliation:
Centro Atómico Bariloche (CNEA), 8400 S.C. de Bariloche, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
Francisco Carlos Lovey
Affiliation:
Centro Atómico Bariloche (CNEA), 8400 S.C. de Bariloche, Argentina
Get access

Abstract

A review of transmission electron microscopy studies of planar defects in 18R and 2H martensites in Cu-Zn-Al alloys is presented. The non-basal plane faults observed in the 2H structure, the F1 faults, show two kinds of dislocations at their ends. In contrast, two types of non-basal plane faults are observed in the 18R structure, Fo and Fx faults. The non-basal plane faults can be composed of segments of Fo and Fx faults. Six types of imperfect dislocations appear, depending on the type of basal plane fault ending at the non-basal plane fault. The Burgers vectors of all these dislocations have been determined from the contrast analysis of the images and HREM observations.

Type
Papers from the InterAmerican Congress on Electron Microscopy
Copyright
© 2004 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahlers, M. (1986). Martensite and equilibrium phases in Cu-Zn and Cu-Zn-Al alloys. Prog Mater Sci 30, 135186.CrossRefGoogle Scholar
Andrade, M., Chandrasekaran, M., & Delaey, L. (1984). The basal plane stacking faults in 18R martensite of copper base alloys. Acta Metall 32, 18091816.CrossRefGoogle Scholar
Andrade, M., Delaey, L., & Chandrasekaran, M. (1982). On some lesser known planar defects in β′1 Cu-Zn-Al martensite. J Physique, Colloque C4 43, C4-673C4-678.CrossRefGoogle Scholar
Condó, A.M. & Lovey, F.C. (1994). Lattice relaxation around non-basal plane stacking defects in 2H martensite. Phil Mag A 70, 6373.CrossRefGoogle Scholar
Condó, A.M. & Lovey, F.C. (1995). Detailed study of stacking faults in martensite. J Physique IV, Colloque C8 5, C8-811C8-816.CrossRefGoogle Scholar
Condó, A.M. & Lovey, F.C. (1999). Imperfect dislocations at non-basal plane defects in 18R and 2H martensites: Transmission electron microscopy studies. Phil Mag A 79, 511526.CrossRefGoogle Scholar
Condó, A.M. & Lovey, F.C. (2003). Interaction of twin boundaries with stacking faults in 2H martensite: A high-resolution electron microscopy study. Phil Mag 83, 14791493.CrossRefGoogle Scholar
Cook, J.M., O'Keefe, M.A., Smith, D.J., & Stobbs, W.M. (1983). The high-resolution electron microscopy of stacking defects in Cu-Zn-Al shape memory alloy. J Microsc 129, 295306.CrossRefGoogle Scholar
Guenin, G., Pynn, R., Rios Jara, D., Delaey, L., & Gobin, F.P. (1980). Lattice dynamics of Cu-Zn-Al martensite. Phys Stat Sol (a) 59, 553556.CrossRefGoogle Scholar
Head, A., Humble, P., Clarebrough, L., Morton, A., & Forewood, C. (1973). Defects in Crystalline Solids, Vol. 17. Amsterdam: North Holland.
Kabra, V.K., Pandey, D., & Lele, S. (1988). On the characterization of basal plane stacking faults in N9R and N18R martensites. Acta Metall 36, 725734.CrossRefGoogle Scholar
Kajiwara, S. (1971). Stacking disorder in martensite of Cu-Zn alloy. J Phys Soc Japan 30, 768774.CrossRefGoogle Scholar
Lovey, F.C. (1987). The fault density in 9R type martensites: A comparison between experimental and calculated results. Acta Metall 35, 11031108.CrossRefGoogle Scholar
Lovey, F.C., Coene, W., Van Dyck, D., Van Tendeloo, G., Van Landuyt, J., & Amelinckx, S. (1984a). HREM imaging conditions for stacking sequences in 18R martensite of Cu-Al alloys. Ultramicroscopy 15, 345356.Google Scholar
Lovey, F.C., Van Tendeloo, G., & Amelinckx, S. (1984b). The nature of some planar defects in 2H martensite of Cu-Al alloys as determined by HREM. Phys Stat Sol (a) 85, 2937.Google Scholar
Lovey, F.C., Van Tendeloo, G., Van Landuyt, J., Delaey, L., & Amelinckx, S. (1984c). On the nature of various stacking defects in 18R martensite in Cu-Al alloys. Phys Stat Sol (a) 86, 553564.Google Scholar
Nishiyama, Z., Kakinoki, J., & Kajiwara, S. (1965). Stacking faults in the martensite of Cu-Al alloy. J Phys Soc Japan 20, 11921211.CrossRefGoogle Scholar
Pelegrina, J.L. & Ahlers, M. (1992). The martensitic phases and their stability in Cu-Zn and Cu-Zn-Al alloys—III. The transformation between the high temperature phase and the 2H martensite. Acta Metall Mater 40, 32213227.Google Scholar
Rios-Jara, D. (1984). Etude des dislocations de l'alliage Cu-Zn-Al en phase β—liaison avec les transformations martensitiques thermoelastiques. Ph.D. Thesis, INSA, Lyon, France.
Rodríguez, P.L., Lovey, F.C., Guenin, G., Pelegrina, J.L., Sade, M., & Morin, M. (1993). Elastic constants of the monoclinic 18R martensite of a Cu-Zn-Al alloy. Acta Metall Mater 41, 33073310.CrossRefGoogle Scholar
Zhu, M., Yang, D.Z., & Jia, C.L. (1989). Non-basal plane defects in 18R martensite and the effect of abnormal defects on thermoelastic martensitic transformation. Metall Trans A 20A, 16311636.CrossRefGoogle Scholar