Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T07:11:37.740Z Has data issue: false hasContentIssue false

High-Resolution Transmission Electron Microscopy Using Negative Spherical Aberration

Published online by Cambridge University Press:  17 March 2004

Chun-Lin Jia
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
Markus Lentzen,
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
Knut Urban
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
Get access

Abstract

A novel imaging mode for high-resolution transmission electron microscopy is described. It is based on the adjustment of a negative value of the spherical aberration CS of the objective lens of a transmission electron microscope equipped with a multipole aberration corrector system. Negative spherical aberration applied together with an overfocus yields high-resolution images with bright-atom contrast. Compared to all kinds of images taken in conventional transmission electron microscopes, where the then unavoidable positive spherical aberration is combined with an underfocus, the contrast is dramatically increased. This effect can only be understood on the basis of a full nonlinear imaging theory. Calculations show that the nonlinear contrast contributions diminish the image contrast relative to the linear image for a positive-CS setting whereas they reinforce the image contrast relative to the linear image for a negative-CS setting. The application of the new mode to the imaging of oxygen in SrTiO3 and YBa2Cu3O7 demonstrates the benefit to materials science investigations. It allows us to image directly, without further image processing, strongly scattering heavy-atom columns together with weakly scattering light-atom columns.

Type
Quantitative Transmission Electron Microscopy at Jülich, Germany
Copyright
© 2004 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Coene, W. & Jansen, A.J.E.M. (1992). Image delocalisation and high resolution transmission electron microscopic imaging with a field emission gun. Scanning Microsc (Suppl. 6), 379403.Google Scholar
Coene, W., Janssen, G., Op de Beeck, M., & Van Dyck, D. (1992). Phase retrieval through focus variation for ultra-resolution in field-emission transmission electron microscopy. Phys Rev Lett 69, 37433746.Google Scholar
Haider, M., Rose, H., Uhlemann, S., Kabius, B., & Urban, K. (1998a). Towards 0.1 nm resolution with the first spherically corrected transmission electron microscope. J Electron Microsc 47, 395405.Google Scholar
Haider, M., Rose, H., Uhlemann, S., Schwan, E., Kabius, B., & Urban, K. (1998b). Electron microscopy image enhanced. Nature 392, 768769.Google Scholar
Haider, M., Rose, H., Uhlemann, S., Schwan, E., Kabius, B., & Urban, K. (1998c). A spherical-aberration-corrected 200 kV transmission electron microscope. Ultramicroscopy 75, 5360.Google Scholar
Heinemann, K. (1971). In-situ measurement of objective lens data of a high-resolution electron microscope. Optik 34, 113128.Google Scholar
Horiuchi, S., Matsui, Y., Kitami, Y., Yokoyama, M., Suehara, S., Wu, X.J., Matsui, I., & Katsuta, T. (1991). Ultra-high-resolution HVEM (H-1500) newly constructed at NIRIM. II. Application to materials. Ultramicroscopy 39, 231237.Google Scholar
Huxford, N.P., Eaglesham, D.J., & Humphreys, C.J. (1987). Limits on quantitative information from high-resolution electron microscopy of YBa2Cu3O7 superconductors. Nature 329, 812813.Google Scholar
Jia, C.L., Lentzen, M., & Urban, K. (2003). Atomic-resolution imaging of oxygen in perovskite ceramics. Science 299, 870873.Google Scholar
Jia, C.L. & Thust, A. (1999). Investigation of atomic displacements at a Σ3 {111} twin boundary in BaTiO3 by means of phase-retrieval electron microscopy. Phys Rev Lett 82, 50525055.Google Scholar
Jorgensen, D., Beno, M.A., Hinks, D.G., Soderholm, L., Volin, K.J., Hitterman, R.L., Grace, J.D., Schuller, I.K., Segre, C.U., Zhang, K., & Kleefisch, M.S. (1987). Oxygen ordering and the orthorhombic-to-tetragonal phase transition in YBa2Cu3O7-x. Phys Rev B 36, 36083616.Google Scholar
Kilaas, R. (1987). Interactive simulation of high resolution electron micrographs. In Proceedings of the 45th Annual EMSA Meeting, Bailey, G.W. (Ed.), pp. 6667. San Francisco, CA: San Francisco Press.
Kisielowski, C., Hetherington, C.J.D., Wang, Y.C., Kilaas, R., O'Keefe, M.A., & Thust, A. (2001). Imaging columns of the light elements carbon, nitrogen and oxygen with sub Ångstrom resolution. Ultramicroscopy 89, 243263.Google Scholar
Krekels, T., Van Tendeloo, G., & Amelinckx, S. (1991). Oxygen-vacancy ordering in Y2Ba4Cu7O15-ε. Appl Phys Lett 59, 30483050.Google Scholar
Lentzen, M., Jahnen, B., Jia, C.L., Thust, A., Tillmann, K., & Urban, K. (2002). High-resolution imaging with an aberration-corrected transmission electron microscope. Ultramicroscopy 92, 233242.Google Scholar
Lichte, H. (1991). Optimum focus for taking electron holograms. Ultramicroscopy 38, 1322.Google Scholar
Morris, D.E., Asmar, N.G., Wei, J.Y.T., Nickel, J.H., Sid, R.L., Scott, J.S., & Post, J.E. (1989). Synthesis and properties of the 2:4:7 superconductors R2Ba4Cu7O15-x (R = Y, Eu, Gd, Dy, Ho, Er). Phys Rev B 40, 1140611409.Google Scholar
Ohtomo, A., Muller, D.A., Grazul, J.L., & Hwang, H.Y. (2002). Artificial charge-modulation in atomic-scale perovskite titanate superlattices. Nature 419, 378380.Google Scholar
O'Keefe, M.A., Hetherington, C.J.D., Wang, Y.C., Nelson, E.C., Turner, J.H., Kisielowski, C., Malm, J.-O., Mueller, R., Ringnalda, J., Pan, M., & Thust, A. (2001). Sub-Ångstrom high-resolution transmission electron microscopy at 300 keV. Ultramicroscopy 89, 215241.Google Scholar
Ourmazd, A. & Spence, J.C.H. (1987). Detection of oxygen ordering in superconducting cuprates. Nature 329, 425427.Google Scholar
Pennycook, S.J., Jesson, D.E., Nellist, P.D., Chrisholm, M.F., & Browning, N.D. (1997). Scanning Transmission Electron Microscopy: Z-Contrast. In Handbook of Microscopy, Vol. II, Amelinckx, S., Van Dyck, D., Van Landuyt, J.F. & Van Tendeloo, G. (Eds.), pp. 595620. Weinheim, Germany: Wiley-VCH.
Poole, C.P., Farach, H.A., & Creswick, R.J. (1995). Superconductivity. San Diego, CA: Academic Press.
Rose, H. (1990). Outline of a spherically corrected semiaplanatic medium-voltage transmission electron microscope. Optik 85, 1924.Google Scholar
Scherzer, O. (1949). The theoretical resolution limit of the electron microscope. J Appl Phys 20, 2029.Google Scholar
Stadelmann, P.A. (1987). EMS—A software package for electron diffraction analysis and HREM image simulation in materials science. Ultramicroscopy 21, 131145.Google Scholar
Tagantsev, A.K., Stolichnov, I., Colla, E.L., & Setter, N. (2001). Polarization fatigue in ferroelectric films: Basic experimental findings, phenomenological scenarios, and microscopic features. J Appl Phys 90, 13871402.Google Scholar
Urban, K., Kabius, B., Haider, M., & Rose, H. (1999). A way to higher resolution: Spherical-aberration correction in a 200 kV transmission electron microscope. J Electron Microsc 48, 821826.Google Scholar
Van Tendeloo, G. & Krekels, T. (2000). Identification of new superconducting compounds by electron microscopy. In Characterization of High TC Materials & Devices by Electron Microscopy, Browning, N.D. & Pennycook, S.J. (Eds.), pp. 161191. Cambridge, UK: Cambridge University Press.
Waser, R. (1997). Dielectric analysis of integrated ceramic thin film capacitors. Integr Ferroelect 15, 3951.Google Scholar
Yan, Y. & Blanchin, M.G. (1991). Direct imaging of the oxygen sublattice in YBa2Cu3O7-δ superconductors by high-resolution electron microscopy. Phys Rev B 43, 1371713719.Google Scholar
Zandbergen, H.W., Gronsky, R., Wang, K., & Thomas, G. (1988). Structure of (CuO)2 double layers in superconducting YBa2Cu3O7. Nature 331, 596599.Google Scholar