Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T06:42:14.257Z Has data issue: false hasContentIssue false

Spherical Aberration Correction in Tandem with Exit-Plane Wave Function Reconstruction: Interlocking Tools for the Atomic Scale Imaging of Lattice Defects in GaAs

Published online by Cambridge University Press:  17 March 2004

K. Tillmann
Affiliation:
Ernst Ruska-Centrum für Mikroskopie und Spektroskopie mit Elektronen, Institut für Festkörperforschung, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
A. Thust
Affiliation:
Ernst Ruska-Centrum für Mikroskopie und Spektroskopie mit Elektronen, Institut für Festkörperforschung, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
K. Urban
Affiliation:
Ernst Ruska-Centrum für Mikroskopie und Spektroskopie mit Elektronen, Institut für Festkörperforschung, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
Get access

Abstract

With the availability of resolution boosting and delocalization minimizing techniques, for example, spherical aberration correction and exit-plane wave function reconstruction, high-resolution transmission electron microscopy is drawing to a breakthrough with respect to the atomic-scale imaging of common semiconductor materials. In the present study, we apply a combination of these two state-of-the-art techniques to investigate lattice defects in GaAs-based heterostructures at atomic resolution. Focusing on the direct imaging of stacking faults as well as the core structure of edge and partial dislocations, the practical capabilities of both techniques are illustrated. For the first time, we apply the technique of bright-atom contrast imaging at negative spherical aberration together with an appropriate overfocus setting for the investigation of lattice defects in a semiconductor material. For these purposes, the elastic displacements associated with lattice defects in GaAs viewed along the [110] zone axis are measured from experimental images using reciprocal space strain map algorithms. Moreover, we demonstrate the benefits of the retrieval of the exit-plane wave function not only for the elimination of residual imaging artefacts but also for the proper on-line alignment of specimens during operation of the electron microscope—a basic prerequisite to obtain a fair agreement between simulated images and experimental micrographs.

Type
Quantitative Transmission Electron Microscopy at Jülich, Germany
Copyright
© 2004 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Boothroyd, C.B. (1998). Why don't high resolution simulations and images match? J Microsc 190, 99108.Google Scholar
Bourret, A., Dessaux, J., & Renault, A. (1982). Core structure of the Lomer dislocation in germanium and silicon. Phil Mag A 45, 120.CrossRefGoogle Scholar
Coene, W. & Jansen, A.J.E.M. (1992). Image delocalisation and high resolution electron microscopy imaging with a field emission gun. Scan Microsc Suppl 6, 379403.Google Scholar
Coene, W.M.J., Thust, A., Op De Beeck, M., & Van Dyck, D. (1996). Maximum-likelihood method for focus-variation image reconstruction in high resolution transmission electron microscopy. Ultramicroscopy 64, 109135.CrossRefGoogle Scholar
Fitzgerald, E.A. (1991). Dislocations in strained-layer epitaxy: Theory, experiment, and applications. Mater Sci Rep 7, 87142.CrossRefGoogle Scholar
Haider, M., Rose, H., Uhlemann, S., Schwan, E., Kabius, B., & Urban, K. (1998). Electron microscopy image enhanced. Nature 392, 768769.CrossRefGoogle Scholar
Hirth, J.P. & Lothe, J. (1982). Theory of Dislocations. New York: Wiley.
Hornstra, J. (1958). Dislocations in the diamond lattice. J Phys Chem Solids 5, 129141.CrossRefGoogle Scholar
Hosokawa, F., Tomita, T., Naruse, M., Honda, T., Hartel, P., & Haider, M. (2003). A spherical aberration-corrected 200 kV TEM. J Electr Microsc 52, 310.CrossRefGoogle Scholar
Hÿtch, M.J. & Stobbs, W.M. (1994). Quantitative comparison of high resolution TEM images with image simulations. Ultramicroscopy 53, 191203.CrossRefGoogle Scholar
Hÿtch, M.J., Snoeck, E., & Kilaas, R. (1998). Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74, 131146.CrossRefGoogle Scholar
Jia, C.L., Lentzen, M., & Urban, K. (2003). Atomic-resolution imaging of oxygen in perovskite ceramics. Science 299, 870872.CrossRefGoogle Scholar
Jia, C.L., Lentzen, M., & Urban, K. (2004). High-resolution transmission electron microscopy using negative spherical aberration. Microsc Microanal, in press.CrossRefGoogle Scholar
Lentzen, M., Jahnen, B., Jia, C.L., Tillmann, K., & Urban, K. (2002). High-resolution imaging with an aberration-corrected transmission electron microscope. Ultramicroscopy 92, 233242.CrossRefGoogle Scholar
Lentzen, M. (2003). The tuning of a Zernike phase plate with defocus and variable spherical aberration and its use in HRTEM imaging. Ultramicroscopy, in press.Google Scholar
Lichte, H. (1991). Optimum focus for taking electron holograms. Ultramicroscopy 38, 1322.CrossRefGoogle Scholar
Lomer, W.M. (1951). A dislocation reaction in the face-centred cubic lattice. Phil Mag 42, 13271331.CrossRefGoogle Scholar
O'Keefe, M.A. & Kilaas, R. (1988). Advances in high-resolution image simulation. Scan Microsc Suppl 2, 225244.Google Scholar
Rose, H. (1990). Outline of a spherically corrected semiaplanatic medium-voltage transmission electron microscope. Optik 85, 1924.Google Scholar
Spence, J.C.H. (1988). Experimental High-Resolution Electron Microscopy. Oxford, UK: Oxford University Press.
Stobbs, S.H., Sato, K., & Stobbs, W.M. (1995). The HREM use of the FEGTEM for the study of interfaces. Ultramicroscopy 58, 275287.CrossRefGoogle Scholar
Thust, A., Coene, W.M.J., Op De Beeck, M., & Van Dyck, D. (1996a). Focal-series reconstruction in HRTEM: Simulation studies on non-periodic objects. Ultramicroscopy 64, 211230.Google Scholar
Thust, A., Overwijk, M.H.F., Coene, W.M.J., & Lentzen, M. (1996b). Numerical correction of lens aberrations in phase-retrieval HRTEM. Ultramicroscopy 64, 249264.Google Scholar
Thust, A., Jia, C.L., & Urban, K. (2002). Extraction of imaging parameters from the object wave function in phase-retrieval electron microscopy. In Proceedings of the 15th International Congress on Electron Microscopy, Vol. 3, R. Cross (Ed.), pp. 167168. Durban, South Africa: Microscopy Society of Southern Africa.
Tillmann, K. & Förster, A. (2000). Critical dimensions for the formation of interfacial misfit dislocations of InGaAs islands on GaAs(001). Thin Solid Films 368, 93104.CrossRefGoogle Scholar
Uhlemann, S. & Haider, M. (1998). Residual wave aberrations in the first spherical aberration corrected transmission electron microscope. Ultramicroscopy 72, 109119.CrossRefGoogle Scholar
Vila, A., Cornet, A., Morante, J.R., Ruterna, P., Loubradou, M., Bonnet, R., Gonyalez, Y., & Gonzalez, L. (1995). Atomic core structure of Lomer dislocation at GaAs/Si(001) interface. Phil Mag. A 75, 85103.CrossRefGoogle Scholar
Williams, D.B. & Carter, C.B. (1996). Transmission Electron Microscopy. New York and London: Plenum Press.CrossRef
Zemlin, F., Weiss, K., Schiske, P., Kunath, W., & Herrmann, K.H. (1978). Coma-free alignment of high resolution electron microscopes with the aid of optical diffractograms. Ultramicroscopy 3, 4960.CrossRefGoogle Scholar