Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T06:39:13.991Z Has data issue: false hasContentIssue false

The Formation of Clusters and Nanocrystals in Er-Implanted Hexagonal Silicon Carbide

Published online by Cambridge University Press:  17 March 2004

U. Kaiser
Affiliation:
Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena, Germany
D.A. Muller
Affiliation:
Bell Laboratories, Lucent Technology, 700 Mountain Avenue, Murray Hill, NJ 07974, USA
A. Chuvilin
Affiliation:
Boreskov Institute of Catalysis, SB RAS, av. Lavrentieva 5, Novosibirsk 90, Russia 630090
G. Pasold
Affiliation:
Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena, Germany
W. Witthuhn
Affiliation:
Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena, Germany
Get access

Abstract

Impurity atom cluster and nanocrystal formation in Er-implanted hexagonal SiC were studied using TEM and HAADF-STEM. Short interstitial loops were initially observed to form in the as-implanted layers. After annealing at 1600°C extended matrix defects (wide interstitial loops and voids), Er atom clusters and nanocrystals grew. The wide interstitial loops act as strong sinks capturing diffusing dopants that gather first in lines, then planes, and finally in three-dimensional ErSi2 nanocrystals. The unstrained nanocrystals have a hill-like shape and only two polarity-dependent orientations with respect to the matrix. One-, two-, and three-dimensional Er atom clusters were also identified. For the case of Ge implantation, again the wide interstitial loops act as sinks for the implanted Ge, representing the seeds of the nanocrystal.

Type
Materials Applications
Copyright
© 2004 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Batson, P.E. (1993). Simultaneous STEM imaging and electron energy-loss spectroscopy with atomic column sensitivity. Nature 366, 727728.Google Scholar
Bechstedt, F., Fissel, A., Grossner, U., Kaiser, U., Weissker, H.-C., & Wesch, W. (2002). Towards quantum structures in SiC. Mat Sci Forum 389–393, 120125.Google Scholar
Biersack, J.P. & Ziegler, J.F. (1985). The Stopping and Ranges of Ions in Matter. Vol. 1, Pergamon Press.
Bracht, H., Stolwijk, N.A., Laube, M., & Pensl, G. (2000). Diffusion of boron in silicon carbide: Evidence for the kick-out mechanism. Appl Phys Lett 77, 31883190.Google Scholar
Browning, N.D., Chisholm, M.M., & Pennycook, S.J. (1993). Atomic-resolution chemical analysis using a scanning transmission electron microscope. Nature 366, 143146.Google Scholar
Choyke, W.J., Devaty, R.P., Clemen, L.L., & Yoganathan, M. (1994). Intense erbium-1.54-μm photoluminescence from 2 to 525 K in ion-implanted 4H, 6H, 15R and 3C SiC. Appl Phys Lett 65, 16681670.Google Scholar
Choyke, W.J., Matsunami, H., & Pensl, G. (1997). Silicon Carbide. Berlin: Wiley-VCH.
Crewe, A.V., Wall, J., & Langmore, J. (1970). Visibility of single atoms. Science 168, 13381340.Google Scholar
Fahey, P.M., Griffin, P.B., & Plummer, J.D. (1989). Point defects and dopant diffusion in silicon. Rev Modern Physics 61, 289384.Google Scholar
Fissel, A., Schröter, B., Kaiser, U., & Richter, W. (2000). Advances in the molecular-beam epitaxial growth of artificially layered heteropolytypical structures of SiC. Appl Phys Lett 77, 24182420.Google Scholar
Gorelik, T., Kaiser, U., Schubert, Ch., Wesch, W., & Glatzel, U. (2002). A TEM study of Ge implanted into SiC. J Mater Res 17, 479486.Google Scholar
Greulich-Weber, S. (1997). EPR and ENDOR investigations of shallow impurities in SiC polytypes. Phys Stat Sol (A) 162, 95151.Google Scholar
Heera, V., Reuther, H., Stoemenos, J., & Pecz, B. (2000a). Phase formation due to high dose aluminium implantation into silicon carbide. J Appl Phys 87, 7885.Google Scholar
Heera, V., Skopura, W., Pecz, B., & Dobos, L. (2000b). Ion beam synthesis of graphite and diamond in silicon carbide. Appl Phys Lett 76, 28472849.Google Scholar
Heft, A., Wendler, E., Heindl, J., Bachmann, T., Glaser, E., Strunk, H.P., & Wesch, W. (1996). Damage production and annealing of ion implanted silicon carbide. Nucl Instrum Meth B 113, 239243.Google Scholar
Hytch, M.J., Snoeck, E., & Kilaas, R. (1998). Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74, 131146.Google Scholar
Janson, M.S., Linnarsson, M.K., Hallen, A., & Svensson, B.G. (2000). Transient enhanced diffusion of implanted boron in 4H-silicon carbide. Appl Phys Lett 76, 14341436.Google Scholar
Kaiser, U. (2001). Nanocrystal formation in hexagonal SiC after Ge ion implantation. J Electr Microsc 50, 251263.Google Scholar
Kaiser, U., Biskupek, J., & Gärtner, K. (2003). Faulted GeSi and Si nanocrystals burierd in hexagonal SiC. Phil. Mag Lett 83, 253263.Google Scholar
Kaiser, U., Biskupek, J., Muller, D., Gärtner, K., & Schubert, Chr. (2002a). Properties of GeSI nanocrystals embedded in hexagonal SiC. Cryst Res Technol 37, 392406.Google Scholar
Kaiser, U. & Chuvilin, A. (2003). On the reveal of crystalline precipitates within a crystalline matrix using CTEM. Microsc Microanal 9, 3641.Google Scholar
Kaiser, U., Chuvilin, A., & Richter, W. (1999). On the peculiarities of bright/dark contrast in HRTEM images of SIC polytypes. Ultramicroscopy 76, 2137.Google Scholar
Kaiser, U., Chuvilin, A., Richter, W., Pasold, G., Witthuhn, W., Schubert, Chr., Wesch, W., & Choyke, J.W. (2001). Nanocrystal formation after Er implantation in 6H-SiC. Proceedings Widegap 2001, Exeter, UK. J. Phys.: Condensed Matter.
Kaiser, U., Muller, D.A., Grazul, J.I., Chuvilin, A., & Kawasaki, M. (2002b). Atomic-scale studies of the nucleation and growth of nanocrystals after ion implantation. Nature Materials 1, 102105.Google Scholar
Lebedev, O.I., van Tendeloo, G., Suvorova, A.A., Usov, I.O., & Suvorov, A.V. (1997). HREM study of ion implantation in 6H-SiC at high temperatures. J Electron Microsc 46, 271279.Google Scholar
Lhermitte-Sebire, I., Vicens, J., Chermant, J.L., Levalois, M., & Paumier, E. (1994). Transmission electron microscopy and high-resolution electron microscopy studies of structural defects induced in 6H-SiC single crystals irradiated by swift Xe ions. Phil Mag A 69, 237244.Google Scholar
Liu, J. & Cowley, J.M. (1991). Imaging with high-angle scattered electrons and secondary electrons in STEM. Ultramicroscopy 37, 5071.Google Scholar
Loane, R.F., Kirkland, E.J., & Silcox, J. (1988). Visibility of single heavy atoms on thin crystalline silicon in simulated annular dark field. Acta Cryst A 44, 912927.Google Scholar
McCarty, K.E., Nobel, J.A., & Barlett, N.C. (2001). Vacancies in solids and the stability of surface morphology. Nature 412, 622625.CrossRefGoogle Scholar
Muller, D.A., Sorsch, T., Moccio, S., Baumann, F.H., Evans-Lutterodt, K., & Timp, G. (2000). The electronic structure at the atomic scale of ultrathin gate oxides. Nature 399, 758761.Google Scholar
Muller, D.A., Tzou, Y., Raj, R., & Silcox, J. (1993). Mapping sp2 and sp3 states of carbon at sub-nanometer spatial resolution. Nature 366, 725727.Google Scholar
Ostwald, W. (1900). Über die vermeintliche Isomerie des rotten und gelben Quecksilberoxyds und die Oberflächenspanung fester Körper. Z Phys Chem 34, 495503.Google Scholar
Panknin, D., Wirth, H., Mücklich, A., & Skorupa, W. (2001). Electrical and microstructural properties of highly boron-implantation doped 6H-SiC. J Appl Phys 89, 31623167.Google Scholar
Pavebi, L., DalNegro, L., Mozzoleni, C., Franco, G., & Priolo, F. (2000). Optical gain in Si nanocrystals. Nature 408, 440445.Google Scholar
Pennycook, S.J. (1989). Z contrast STEM for materials science. Ultramicroscopy 30, 5869.Google Scholar
Persson, P.O.A. & Hultman, L. (2001). Growth evolution of dislocation loops in ion implanted 4H-SiC. Mat Sci Forum 353–356, 315318.Google Scholar
Schubert, Ch., Kaiser, U., Hedler, A., Wesch, W., Gorelik, T., Glatzel, U., Kräusslich, J., Wunderlich, B., Hess, G., & Goetz, K. (2002). Nanocrystal formation in SiC by Ge ion implantation and subsequent thermal annealing. J Appl Phys 91, 15201524.Google Scholar
Shi, J., Gider, S., Babcock, K., & Awschalom, D.D. (1996). Magnetic clusters in molecular beams. Met Semicond Sci 271, 937941.Google Scholar
Stoemenos, J., Pecz, B., & Heera, V. (1999). Epitaxial aluminium carbide formation in 6H-SiC by high-dose Al+ implantation. Appl Phys Lett 74, 26022604.Google Scholar
Tairov, Y.M. & Vodakov, Y. (1977). A 2.Group IV Materials “Electroluminescence,” J.I. Pankove (Ed.), p. 35. Berlin, Heidelberg: Springer Verlag.
Treacy, M.M.J., Howie, A., & Wilson, C.J. (1978). Z contrast of platinum and palladium crystals. Phil Mag A 38, 569585.Google Scholar
Usov, I.O., Suvorova, A.A., Sokolov, V.V., Kudryavtsev, Y.A., & Suvorov, A.V. (1999). Transient enhanced diffusion of aluminum in SiC during high temperature ion implantation. J Appl Phys 86, 60396042.Google Scholar
Weissker, H.C., Furthmüller, J., & Bechstedt, F. (2001). First-principles of optical properties: Application to embedded Ge and Si dots. Phys Stat Sol B 224, 769773.Google Scholar