Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T08:22:55.495Z Has data issue: false hasContentIssue false

Entropy and simple waves in multidimensional gas flow

Published online by Cambridge University Press:  24 October 2008

Lawrence E. Levine
Affiliation:
Stevens Institute of Technology, Hoboken, N.J. 07030

Abstract

It is shown that the n-dimensional simple wave flow of a perfect gas, that is, flow in which the velocity components, pressure and density depend on only one generating function, must be isentropic. This result is then employed to explain why two independent investigations of apparently different types of simple waves have led to the same results.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Courant, R. and Fbiedrichs, K. O.Supersonic flow and shock waves (Interscience, New York, 1948).Google Scholar
(2)Cumberbatch, E. and Varley, E.Generalized self-similar flows. J. Inst. Math. Appl. 2 (1966), 1–ndash;11.CrossRefGoogle Scholar
(3)Gudebley, G.Starke kugelige und zylindrishe Verdichtungsstosse in der Nahe des Kugelmittelpunktes bzw. der Zylinderachse. Luftfahrtforschung, 19, No. 9 (1942).Google Scholar
(4)Ianenko, N. N.Travelling wave systems of quasi-linear equations (Russian). Dokl. Akad. Naulc. SSSR. 109 (1956), 44–ndash;47.Google Scholar
(5)Levine, L. E.Unsteady, self-similar, two-dimensional simple wave flows. Quart. Appl. Math. 27 (1969), 399–ndash;404.CrossRefGoogle Scholar
(6)Schindler, G. M.Simple waves in multidimensional gas flow, SIAM J. Appl. Math. 19 (1970), 390–ndash;407.CrossRefGoogle Scholar
(7)Sibobov, A. F.Some two-dimensional self-similar flows of a polytropic gas with variable entropy. Soviet Physics Dokl. 12 (1967), 189191.Google Scholar
(8)Stanyukovich, K. P.Unsteady motion of continuous media. (Pergamon Press, New York, 1960).Google Scholar