Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-14T21:26:28.487Z Has data issue: false hasContentIssue false

Effects of altitude and vegetation on small-mammal distribution in the Urucum Mountains, western Brazil

Published online by Cambridge University Press:  10 March 2011

Nilton Carlos Caceres*
Affiliation:
Laboratory of Ecology and Biogeography, Departamento de Biologia, CCNE, Universidade Federal de Santa Maria, Bairro Camobi, Santa Maria, RS, 97.110–970, Brazil
Maurício Neves Godoi
Affiliation:
Programa de Pós-Graduação em Ecologia e Conservação, CCBS, Universidade Federal do Mato Grosso do Sul, CCBS, C.P. 549, Campo Grande, MS, 79.070–900, Brazil
Wellington Hannibal
Affiliation:
Rua Cláudio Fernando Stella, 5 Conjunto Elídio Telles de Oliveira, Aquidauana, MS, 79200-000, Brazil
Vanda Lúcia Ferreira
Affiliation:
Programa de Pós-Graduação em Ecologia e Conservação, CCBS, Universidade Federal do Mato Grosso do Sul, CCBS, C.P. 549, Campo Grande, MS, 79.070–900, Brazil
*
1Corresponding author. Email: [email protected]

Abstract:

We conducted a study on small-mammal composition, abundance and diversity across altitudinal and vegetational gradients in the Urucum Mountains (from 150 to 1000 m asl) in western Brazil, a complex biogeographic region. Small mammals were collected in 31 sampling units distributed along altitudinal and vegetational gradients (forest and grassland), totalling 18 112 trap-nights for pitfall and 3500 trap-nights for live-trap. Community variation among sampling units was assessed by randomization tests, setting altitude, vegetation, locality and time as factors, and using presence/absence data. Correlation and logistic regression analyses were run for species and diversity along gradients of altitude and vegetation, according to abundance and presence/absence data. Nineteen species (seven marsupial and 12 rodent) and 355 individuals were recorded. The species composition of small mammals differed according to altitude, vegetation type, locality and time. Species diversity varied significantly according to altitude. Species were influenced solely by altitude or vegetation, or by both vegetation and altitude concomitantly. The small-mammal community was divided in two groups according to biogeographic affinities. The grassland group is capable of invading forest habitats. The results are discussed in light of current hypotheses that attempt to explain community variation along altitudinal gradients around the world.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

AB'SABER, A. N. 1977. Os domínios morfoclimáticos da América do Sul: primeira aproximação. Geomorfologia 52:121.Google Scholar
AYRES, M., AYRES, M. JR, AYRES, D. L. & SANTOS, A. A. 2007. Bioestat 5.0. Aplicaçöes estatısticas nas áreas das ciências bio-médicas. Sociedade Civil Mamirauá, Belém, Brazil. 364 pp.Google Scholar
BONVICINO, C. R., CERQUEIRA, R. & SOARES, V. A. 1996. Habitat use by small mammals of upper Araguaia River. Revista Brasileira de Biologia 56:761767.Google Scholar
BONVICINO, C. R., LANGGUTH, A., LINDBERGH, S. M. & PAULA, A. C. 1997. An elevational gradient study of small mammals at Caparaó National Park, south eastern Brazil. Mammalia 61:547560.CrossRefGoogle Scholar
BONVICINO, C. R., LINDBERGH, S. M. & MAROJA, L. S. 2002. Small non-flying mammals from conserved and altered areas of Atlantic Forest and Cerrado: comments on their potential use for monitoring environment. Brazilian Journal of Biology 62:112.CrossRefGoogle ScholarPubMed
BRUM, F. T., DUARTE, L. S. & HARTZ, S. M. 2010. Seed removal patterns by vertebrates in different successional stages of Araucaria forest advancing over southern Brazilian grasslands. Community Ecology 11:3540.CrossRefGoogle Scholar
CACERES, N. C., FERREIRA, V. L. & CARMIGNOTTO, A. P. 2007. Occurrence of the mouse opossum Marmosops ocellatus (Marsupialia, Didelphidae) in western Brazil. Mammalian Biology 72:4548.CrossRefGoogle Scholar
CACERES, N. C., HANNIBAL, , , W. & NAPOLI, R. P. In press. Small mammal differential trapping success using pitfall and standard cage traps in a woodland savannah region of south-western Brazil. Mammalia 75: DOI 10.1515/MAMM.2010.069.Google Scholar
CACERES, N. C., NAPOLI, R. P., CASELLA, J. & HANNIBAL, W. 2010. Mammals in a fragmented savannah landscape in south-western Brazil. Journal of Natural History 44:491512.CrossRefGoogle Scholar
COSTA, L. P. 2003. The historical bridge between the Amazon and the Atlantic forest of Brazil: a study of molecular phylogeography with small mammals. Journal of Biogeography 30:7186.CrossRefGoogle Scholar
FONSECA, G. A. B., HERRMANN, G., LEITE, Y. R. L., MITTERMEIER, R. A., RYLANDS, A. B. & PATTON, J. L. 1996. Lista anotada dos mamíferos do Brasil. Occasional Paper Conservation International 4:138.Google Scholar
GEISE, L., PEREIRA, L. G., BOSSI, D. E. P. & BERGALLO, H. G. 2004. Pattern of elevational distribution and richness of non volant mammals in Itatiaia National Park and its surroundings, in southeastern Brazil. Brazilian Journal of Biology 64:599612.CrossRefGoogle ScholarPubMed
GODOI, M. N., CUNHA, N. L. & CACERES, N. C. 2010. Efeito do gradiente floresta-cerrado-campo sobre a comunidade de pequenos mamíferos do alto do Maciço do Urucum, oeste do Brasil. Mastozoología Neotropical 17:263277.Google Scholar
HANNIBAL, W. & CACERES, N. C. 2010. Use of vertical space by small mammals in gallery forest and woodland savannah in south-western Brazil. Mammalia 74:247255.CrossRefGoogle Scholar
KASANGAKI, A., KITYO, R. & KERBIS, J. 2003. Diversity of rodents and shrews along an elevational gradient in Bwindi Impenetrable National Park, south-western Uganda. African Journal of Ecology 41:115123.CrossRefGoogle Scholar
KÖRNER, C. 2007a. Climatic treelines: conventions, global patterns, causes. Erdkunde 61:316324.CrossRefGoogle Scholar
KÖRNER, C. 2007b. The use of ‘altitude’ in ecological research. Trends in Ecology and Evolution 22:569574.CrossRefGoogle ScholarPubMed
LACHER, T. E. & ALHO, C. J. R. 2001. Terrestrial small mammal richness and habitat associations in an Amazon forest–Cerrado contact zone. Biotropica 33:171181.CrossRefGoogle Scholar
MAUFFREY, J. F. & CATZEFLIS, F. 2003. Ecological and isotopic discrimination of syntopic rodents in a neotropical rain forest of French Guiana. Journal of Tropical Ecology 19:209214.CrossRefGoogle Scholar
MCCAIN, C. M. 2004. The mid-domain effect applied to elevational gradients: species richness of small mammals in Costa Rica. Journal of Biogeography 31:1931.CrossRefGoogle Scholar
MCCAIN, C. M. 2005. Elevational gradients in diversity of small mammals. Ecology 86:366372.CrossRefGoogle Scholar
NOR, S. M., BATIN, Z. & AKBAR, Z. 2001. Elevational diversity pattern of non-volant small mammals on Mount Nuang, Hulu Langat, Selangor. Journal of Biological Sciences 1:10811084.Google Scholar
ORIANS, G. H. & WITTENBERG, J. F. 1991. Spatial and temporal scales in habitat selection. American Naturalist 137:S29S49.CrossRefGoogle Scholar
PENG, C. J., LEE, K. L. & INGERSOLL, G. M. 2002. An introduction to logistic regression analysis and reporting. Journal of Educational Research 96:314.CrossRefGoogle Scholar
PILLAR, V. P. 2006. MULTIV, Multivariate exploratory analysis, randomization testing and bootstrap resampling. User's guide v. 2.4. Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. 51 pp.Google Scholar
PILLAR, V. D. & ORLÓCI, L. 1996. On randomization testing in vegetation science: multifactor comparisons of relevé groups. Journal of Vegetation Science 7:585592.CrossRefGoogle Scholar
RODRIGUES, F. H. G., MEDRI, I. M., TOMÁS, W. M. & MOURÃO, G. M. 2002. Revisão do conhecimento sobre ocorrência e distribuição de mamíferos do Pantanal. Embrapa Documentos 38:141.Google Scholar
ROSENZWEIG, M. L. 1991. Habitat selection and population interactions: the search for mechanism. American Naturalist 137:S5S28.CrossRefGoogle Scholar
ROWE, R. J. 2009. Environmental and geometric drivers of small mammal diversity along elevational gradients in Utah. Ecography 32:411422.CrossRefGoogle Scholar
SÁNCHEZ-CORDERO, V. 2001. Elevational gradients of diversity for rodents and bats in Oaxaca, Mexico. Global Ecology and Biogeography 10:6376.CrossRefGoogle Scholar
SANTOS-FILHO, M., DA SILVA, D. J. & SANAIOTTI, T. M. 2008. Edge effects and landscape matrix use by a small mammal community in fragments of semideciduous submontane forest in Mato Grosso, Brazil. Brazilian Journal of Biology 68:703710.CrossRefGoogle ScholarPubMed
VIEIRA, E. M. & MONTEIRO-FILHO, E. L. A. 2003. Vertical stratification of small mammals in the Atlantic rain forest of south-eastern Brazil. Journal of Tropical Ecology 19:501507.CrossRefGoogle Scholar
VIVO, M. 1997. Mammalian evidence of historical ecological change in the Caatinga semiarid vegetation of northeastern Brazil. Journal of Comparative Biology 2:6573.Google Scholar
YAHNKE, C. J. 2006. Habitat use and natural history of small mammals in the Central Paraguayan Chaco. Mastozoología Neotropical 13:103116.Google Scholar