Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T17:04:16.593Z Has data issue: false hasContentIssue false

Theoretical investigations on mechanical and thermal properties of MSiO4 (M = Zr, Hf)

Published online by Cambridge University Press:  29 June 2015

Huimin Xiang
Affiliation:
Science and Technology on Advanced Functional Composite Laboratory, Aerospace Research Institute of Materials and Processing Technology, Beijing 100076, China
Zhihai Feng
Affiliation:
Science and Technology on Advanced Functional Composite Laboratory, Aerospace Research Institute of Materials and Processing Technology, Beijing 100076, China
Zhongping Li
Affiliation:
Science and Technology on Advanced Functional Composite Laboratory, Aerospace Research Institute of Materials and Processing Technology, Beijing 100076, China
Yanchun Zhou*
Affiliation:
Science and Technology on Advanced Functional Composite Laboratory, Aerospace Research Institute of Materials and Processing Technology, Beijing 100076, China
*
a)Address all correspondence to this author. e-mail: [email protected], [email protected]
Get access

Abstract

In this contribution, the structural, mechanical, and thermal properties of MSiO4 have been investigated theoretically and the anisotropy of elastic properties has been discussed in detail. The heterogeneous bonding nature was revealed from density functional theory computations and chemical bond theory (CBT). The Young's modulus and shear modulus of MSiO4 were anisotropic and the anisotropy on different planes was quite different. The thermal expansion coefficients of MSiO4 estimated from CBT were 5.1 × 10−6 and 4.4 × 10−6 K−1 for ZrSiO4 and HfSiO4, respectively. These results were quite consistent with the experiments. The temperature dependent thermal conductivities of MSiO4 were estimated from Slack's model, the minimum thermal conductivity was predicted to be 1.54 and 1.24 W m−1 K−1 for ZrSiO4 and HfSiO4, respectively. Our theoretical results show that MSiO4 are excellent thermal barrier materials with good tolerance to withstand the mechanical damage.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Veytizou, C., Quinson, J.F., and Jorand, Y.: Preparation of zircon bodies from amorphous precursor powder synthesized by sol-gel processing. J. Eur. Ceram. Soc. 22, 2901 (2002).CrossRefGoogle Scholar
Ewing, R.C., Lutz, W., and Weber, W.J.: Zircon: A host-phase for the disposal of weapons plutonium. J. Mater. Res. 10, 243 (1995).CrossRefGoogle Scholar
Cao, X.Q., Vassen, R., and Stoever, D.: Ceramic materials for thermal barrier coatings. J. Eur. Ceram. Soc. 24, 1 (2004).CrossRefGoogle Scholar
Yang, B., Luff, B.J., and Townsend, P.D.: Cathodoluminescence of natural zircons. J. Phys.: Condens. Matter 4, 5617 (1992).Google Scholar
Crocombette, J.P. and Ghaleb, D.: Modeling the structure of zircon (ZrSiO4): Empirical potentials, ab initio electronic structure. J. Nucl. Mater. 257, 282 (1998).CrossRefGoogle Scholar
Akhtar, M.J. and Waseem, S.: Atomistic simulation studies of zircon. Chem. Phys. 274, 109 (2001).CrossRefGoogle Scholar
Robinson, K., Gibbs, G.V., and Ribbe, P.H.: The structure of zircon: A comparison with garnet. Am. Mineral. 56, 782 (1971).Google Scholar
Terki, R., Bertrand, G., and Aourag, H.: Full potential investigations of structural and electronic properties of ZrSiO4. Microelectron. Eng. 81, 514 (2005).CrossRefGoogle Scholar
Rignanese, G.M., Gonze, X., and Pasquarello, A.: First-principles study of structural, electronic, dynamical, and dielectric properties of zircon. Phys. Rev. B 63, 104305 (2001).CrossRefGoogle Scholar
Pruneda, J.M., Archer, T.D., and Artacho, E.: Intrinsic point defects and volume swelling in ZrSiO4 under irradiation. Phys. Rev. B 70, 104111 (2004).CrossRefGoogle Scholar
Du, J., Devanathan, R., Corrales, L.R., and Weber, W.J.: First-principles calculations of the electronic structure, phase transition and properties of ZrSiO4 polymorphs. Comput. Theor. Chem. 987, 62 (2012).CrossRefGoogle Scholar
Speer, J.A. and Cooper, B.J.: Crystal structure of synthetic hafnon, HfSiO4, comparison with zircon and the actinide orthosilicates. Am. Mineral. 67, 804 (1982).Google Scholar
Rignanese, G-M., Gonze, X., Jun, G., Cho, K., and Pasquarello, A.: First-principles investigation of high-κ dielectrics: Comparison between the silicates and oxides of hafnium and zirconium. Phys. Rev. B 69, 184301 (2004).CrossRefGoogle Scholar
Bose, P.P., Mittal, R., and Chaplot, S.L.: Lattice dynamics and high pressure phase stability of zircon structured natural silicates. Phys. Rev. B 79, 174301 (2009).CrossRefGoogle Scholar
Xiong, K., Du, Y., Tse, K., and Robertson, J.: Defect states in the high-dielectric-constant gate oxide HfSiO4. J. Appl. Phys. 101, 024101 (2007).CrossRefGoogle Scholar
Liu, Q., Liu, Z., Feng, L., Tian, H., and Zeng, W.: First-principles investigations on structural, elastic, electronic, and optical properties of tetragonal HfSiO4. Braz. J. Phys. 42, 20 (2012).CrossRefGoogle Scholar
van Westrenen, W., Frank, M.R., Hanchar, J.M., Fei, Y., Finch, R.J., and Zha, C.S.: In situ determination of the compressibility of synthetic pure zircon (ZrSiO4) and the onset of the zircon-reidite phase transition. Am. Mineral. 89, 197 (2004).CrossRefGoogle Scholar
Ono, S., Tange, Y., Katayama, I., and Kikegawa, T.: Equations of state of ZrSiO4 phases in the upper mantle. Am. Mineral. 89, 185 (2004).CrossRefGoogle Scholar
Knittle, E. and Williams, Q.: High-pressure Raman spectroscopy of ZrSiO4: Observation of the zircon to scheelite transition at 300 K. Am. Mineral. 78, 245 (1993).Google Scholar
Shi, Y., Huang, X., and Yan, D.: Fabrication of hot-pressed zircon ceramics: Mechanical properties and microstructure. Ceram. Int. 23, 457 (1997).CrossRefGoogle Scholar
Mori, T., Yamamura, H., Kobayashi, H., and Mitamura, T.: Preparation of high-purity ZrSiO4, powder using sol-gel processing and mechanical properties of the sintered body. J. Am. Ceram. Soc. 75, 2420 (1992).CrossRefGoogle Scholar
Gao, D., Zhang, Y., Fu, J., Xu, C., Song, Y., and Shi, X.: Oxidation of zirconium diboride–silicon carbide ceramics under an oxygen partial pressure of 200 Pa: Formation of zircon. Corros. Sci. 52, 3297 (2010).CrossRefGoogle Scholar
Parthasarathy, T.A., Petry, M.D., Cinibulk, M.K., Mathur, T., and Gruber, M.R.: Thermal and oxidation response of UHTC leading edge samples exposed to simulated hypersonic flight conditions. J. Am. Ceram. Soc. 96, 907 (2013).CrossRefGoogle Scholar
Segall, M.D., Lindan, P.J.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J., and Payne, M.C.: First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter 14, 2717 (2002).Google Scholar
Vanderbilt, D.: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892 (1990).CrossRefGoogle Scholar
Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle ScholarPubMed
Monkhorst, H.J. and Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).CrossRefGoogle Scholar
Sanchez-Portal, D., Artacho, E., and Soler, J.M.: Projection of plane-wave calculations into atomic orbitals. Solid State Commun. 95, 685 (1995).CrossRefGoogle Scholar
Segall, M.D., Shah, R., Pickard, C.J., and Payne, M.C.: Population analysis of plane-wave electronic structure calculations of bulk materials. Phys. Rev. B 54, 16317 (1996).CrossRefGoogle ScholarPubMed
Pfrommer, B.G., Côté, M., Louie, S.G., and Cohen, M.L.: Relaxation of crystals with the quasi-Newton method. J. Comput. Phys. 131, 233 (1997).CrossRefGoogle Scholar
Milman, V. and Warren, M.C.: Elasticity of hexagonal BeO. J. Phys.: Condens. Matter 13, 241 (2001).Google Scholar
Voigt, W.: Lehrbuch der Kristallphysik (Teubner, Leipzig, Germany, 1928).Google Scholar
Reuss, A.: Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizittsbedingung für Einkristalle. Z. Angew. Math. Mech. 9, 49 (1929).CrossRefGoogle Scholar
Hill, R.: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc., Sect. A 65, 349 (1952).CrossRefGoogle Scholar
Green, D.J.: An Introduction to the Mechanical Properties of Ceramics (Cambridge University Press, Cambridge, 1993).Google Scholar
Clarke, D.R.: Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surf. Coat. Technol. 163164, 67 (2003).CrossRefGoogle Scholar
Liu, B., Wang, J.Y., Li, F.Z., and Zhou, Y.C.: Theoretical elastic stiffness, structural stability and thermal conductivity of La2T2O7 (T = Ge, Ti, Sn, Zr, Hf) pyrochlore. Acta Mater. 58, 4369 (2010).CrossRefGoogle Scholar
Zhou, Y.C., Xiang, H.M., and Feng, Z.H.: Theoretical investigation on mechanical and thermal properties of a promising thermal barrier material: Yb3Al5O12. J. Mater. Sci. Technol. 30, 631 (2014).CrossRefGoogle Scholar
Xiang, H.M., Feng, Z.H., and Zhou, Y.C.: Theoretical investigations on mechanical anisotropy and intrinsic thermal conductivity of YbAlO3. J. Eur. Ceram. Soc. 35, 1549 (2015).CrossRefGoogle Scholar
Xiang, H.M., Feng, Z.H., and Zhou, Y.C.: Mechanical and thermal properties of Yb2SiO5: First-principles calculations and chemical bond theory investigations. J. Mater. Res. 29, 1609 (2014).CrossRefGoogle Scholar
Anderson, O.L.: A simplified method for calculating the Debye temperature from elastic constants. J. Phys. Chem. Solids 24, 909 (1963).CrossRefGoogle Scholar
Slack, G.A.: Nonmetallic crystals with high thermal conductivity. J. Phys. Chem. Solids 34, 321 (1973).CrossRefGoogle Scholar
Sanditov, B.D., Tsydypov, S.B., and Sanditov, D.S.: Relation between the grüneisen constant and Poisson’s ratio of vitreous system. Acoust. Phys. 53, 594 (2007).CrossRefGoogle Scholar
Li, H., Zhou, S., and Zhang, S.: The relationship between the thermal expansions and structures of ABO4 oxides. J. Solid State Chem. 180, 589 (2007).CrossRefGoogle Scholar
Carter, C.B. and Norton, M.G.: Ceramic Materials: Science and Engineering (Springer, New York, 2007).Google Scholar
Özkan, H. and Jamieson, J.C.: Pressure dependence of the elastic constants of nonmetamict zircon. Phys. Chem. Minerals 2, 215 (1978).CrossRefGoogle Scholar
Chaplot, S.L., Mittal, R., and Choudhury, N.: Thermodynamic Properties of Solids: Experiment and Modeling (Wiley-VCH, Weinheim, Germany, 2010).CrossRefGoogle Scholar
Born, M. and Huang, K.: Dynamical Theory of Crystal Lattices (Oxford University Press, London, 1954).Google Scholar
Pugh, S.F.: XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45, 823 (1954).CrossRefGoogle Scholar
Musil, J., Kunc, F., Zeman, H., and Polakova, H.: Relationships between hardness, Young’s modulus and elastic recovery in hard nanocomposite coatings. Surf. Coat. Technol. 154, 304 (2002).CrossRefGoogle Scholar
Wang, J.Y., Zhou, Y.C., and Lin, Z.J.: First-principles elastic stiffness of LaPO4 monazite. Appl. Phys. Lett. 87, 051902 (2005).CrossRefGoogle Scholar
Ravindran, P., Fast, L., Korzhavyi, P.A., Johansson, B., Wills, J., and Eriksson, O.: Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2. J. Appl. Phys. 84, 4891 (1998).CrossRefGoogle Scholar
Chen, X.Q., Niu, H.Y., Li, D.Z., and Li, Y.Y.: Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics 19, 1275 (2011).CrossRefGoogle Scholar
Rendtorff, N.M., Grasso, S., Hu, C., Suarez, G., Aglietti, E.F., and Sakka, Y.: Dense zircon (ZrSiO4) ceramics by high energy ball milling and spark plasma sintering. Ceram. Int. 38, 1793 (2012).CrossRefGoogle Scholar
Nye, J.F.: Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford Science Publications, Oxford, 1985).Google Scholar
Turley, J. and Sines, G.: The anisotropy of Young’s modulus, shear modulus and Poisson’s ratio in cubic materials. J. Phys. D: Appl. Phys. 4, 264 (1971).CrossRefGoogle Scholar
Subbarao, E.C., Agrawal, D.K., McKinstry, H.A., Sallese, C.W., and Roy, R.: Thermal expansion of compounds of zircon structure. J. Am. Ceram. Soc. 73, 1246 (1990).CrossRefGoogle Scholar